Published

2022-08-17

Combining ability and selection of wheat populations for a tropical environment

Aptitud combinatoria y selección de poblaciones de trigo para un medio ambiente tropical

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.99390

Keywords:

additive effect, diallel analysis, mixed models, segregating population, Triticum aestivum L. (en)
efecto aditivo, análisis dialélico, modelos mixtos, segregación de población, Triticum aestivum L. (es)

Downloads

Authors

The selection of segregating populations with the potential for derived lines is essential for breeding programs. The present work analyzes the potential of tropical F2 wheat (Triticum aestivum L.) populations originated from complete diallel cross combinations. For this purpose, eight tropical wheat cultivars were combined in a complete diallel design in 2019 after F1 seeds were multiplied in a greenhouse and the seeds of 56 F2 populations, plus the eight parents, were evaluated in the field in Viçosa, MG, Brazil in the winter harvest of 2020 using a simple lattice design (8×8). The trait scores of (1) severity of tan spot (Pyrenophora tritici-repentis), (2) severity of wheat head blast (WHB) (Magnaporthe oryzae pathotype Triticum), (3) days to heading, (4) spike height, (5) and total grain weight of the plot were evaluated. We performed a diallel analysis using mixed models to obtain the effects of general combining ability (GCA), specific combining ability (SCA), and estimation of population genotypic values. The additive effect predominated for the control of all traits, except for spike height. There were greater GCA effects for the set of parental maternal plants. Heritability, in the narrow sense, ranged from 0.20 (blast) to 0.66 (heading). There was an effect of maternal GCA for all variables, while for paternal GCA the effect was only for days passed for head and total grain weight. Populations derived from the cultivars TBIO Aton, TBIO Ponteiro, and TBIO Sossego had lower disease severity, while the combinations from BRS 254, BRS 264, and BRS 394 had earlier maturation time. The most promising combinations to derive lines for the set of traits were BRS 254 × CD 1303, BRS 394 × TBIO Aton, TBIO Aton × BRS 254, CD 1303 × BRS 254, and CD 1303 × BRS 264.

La selección de poblaciones segregantes con potencial para derivar líneas es esencial para los programas de mejoramiento. El presente trabajo presenta el potencial de las poblaciones tropicales de trigo F2 (Triticum aestivum L.) generadas a partir de combinaciones de cruces dialélicos completos. Para ello, se combinaron ocho cultivares de trigo tropical en un diseño dialélico completo en 2019 después de multiplicar semillas F1 en invernadero y se evaluaron en campo las semillas de 56 poblaciones F2, más los ocho progenitores, en la cosecha de invierno de 2020 en un diseño reticular simple (8×8) en Viçosa, MG, Brasil. Se evaluaron las variables: severidad de la mancha amarilla (Pyrenophora tritici-repentis), severidad del tizón (WHB) (Magnaporthe oryzae pathotype Triticum), número de días hasta embuchamiento, altura de la espiga y peso total de grano en la parcela. El análisis dialélico se realizó utilizando modelos mixtos para obtener los efectos de capacidad combinatoria general (GCA), capacidad combinatoria específica (SCA) y estimación de valores genotípicos de la población. El efecto aditivo predominó para el control de todas las variables, excepto para la altura de la espiga. Hubo mayores efectos de GCA para el conjunto de plantas madres progenitoras. La heredabilidad, en sentido estricto, osciló entre 0.20 (tizón) y 0.66 (embuchamiento). Hubo efecto de la CGA materna para todas las variables, mientras que para la CGA paterna solo para número de días hasta embuchamiento y peso total de grano en la parcela. Las poblaciones derivadas de los cultivares TBIO Aton, TBIO Ponteiro y TBIO Sossego presentaron menor severidad de la enfermedad, mientras que las combinaciones de BRS 254, BRS 264 y BRS 394 presentaron un tiempo de maduración más temprano. Las combinaciones más promisorias para derivar líneas para el conjunto de variables evaluadas fueron BRS 254 × CD 1303, BRS 394 × TBIO Aton, TBIO Aton × BRS 254, CD 1303 × BRS 254 y CD 1303 × BRS 264.

References

Afridi, K., Khan, N. U., Mohammad, F., Shah, S. J. A., Gul, S., Khalil, I. A., Sajjad, M., Ali, S., Ali I., & Khan, S. M. (2017). Inheritance pattern of earliness and yield traits on half-diallel crosses of spring wheat. Canadian Journal of Plant Science, 97(5), 865–880. https://doi.org/10.1139/cjps-2016-0309

Akel, W., Rapp, M., Thorwarth, P., Würschum, T., & Longin, C. F. H. (2018). Hybrid durum wheat: heterosis of grain yield and quality traits and genetic architecture of anther extrusion. Theoretical and Applied Genetics, 132, 921–932. https://doi.org/10.1007/s00122-018-3248-6

Casagrande, C. R., Mezzomo, H. C., Cruz, C. D., Borém, A., & Nardino, M. (2020). Choosing parents tropical wheat genotypes through genetic dissimilarity based on REML/BLUP. Crop Breeding and Applied Biotechnology, 20(3), e329120316. https://doi.org/10.1590/1984-70332020v20n3a50

Céron-Rojas, J. J., & Crossa, J. (2020). Expectation and variance of the estimator of the maximized selection response of linear selection indices with normal distribution. Theoretical and Applied Genetics, 133, 2743–2758. https://doi.org/10.1007/s00122-020-03629-6

Chagas, J. T. B., Santos, P. R., Daher, R., Stida, W. F., Vidal, A. K., Nascimento, M. R., Costa, K. D. S., Vivas, M., Amaral Júnior, A. T., & Menezes, D. (2019). Estimation of genetic merit of diallel hybrids of sweet pepper by mixed models. Ciência Rural, 49(8), Article e20180968. https://doi.org/10.1590/0103-8478cr20180968

Conab – Companhia Nacional de Abastecimento. (2021, March). Acompanhamento da safra brasileira de grãos. https://www.conab.gov.br/ingo-agro/safras/graos/boletim-da-safra-de-graos

Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos biométricos aplicados ao melhoramento genético (3th ed.). Editora UFV.

Elias, E., Cantrell, R. G., & Hosford Jr., R. M. (1989). Heritability of resistance to tan spot in durum wheat and its association with other agronomic traits. Crop Science, 29(2), 299–304. https://doi.org/10.2135/cropsci1989.0011183X002900020013x

Fasahat, P., Rajabi, A., Rad, J. M., & Derera, J. (2016). Principles and utilization of combining ability in plant breeding. Biometrics & Biostatistics International Journal, 4(1), 1–22. https://doi.org/10.15406/bbij.2016.04.00085

Hickey, L. T., Hafeez, A. N., Robinson, H., Jackson, S. A., Leal-Bertioli, S. C. M., Tester, M., Gao, C., Godwin, I. D., Hayes, B. J., & Wulff, B. B. H. (2019). Breeding crops to feed 10 billion. Nature Biotechnology, 37, 744–754. https://doi.org/10.1038/s41587-019-0152-9

Juliana, P., He, X., Kabir, M. R., Roy, K. K., Anwar, M. B., Marza, F., Poland, J., Sherestha, S., Singh, R. P., & Singh, P. K. (2020). Genome-wide association mapping for wheat blast resistance in CIMMYT’s international screening nurseries evaluated in Bolivia and Bangladesh. Scientific Reports, 10, Article 15972. https://doi.org/10.1038/s41598-020-72735-8

Lamari, L., & Bernier, C. C. (1989). Evaluation of wheat lines and cultivars to tan spot (Pyrenophora tritici-repentis) based on lesion type. Canadian Journal of Plant Pathology, 11(1), 49–56. https://doi.org/10.1080/07060668909501146

Ljubicic, N., Petrovic, S., Kostic, M., Dimitrijevic, M., Hristov, N., Kondic-Spika, A., & Jevitic, R. (2017). Diallel analysis of some important grain yield traits in bread wheat crosses. Turkish Journal of Field Crops, 22(1), 1–7. https://doi.org/10.17557/tjfc.297681

Maciel, J. L. N., Danelli, A. L. D., Boaretto, C., & Forcelini, C. A. (2013). Diagrammatic scale for the assessment of blast on wheat spikes. Summa Phytopathologica, 39(3), 162–166. https://doi.org/10.1590/S0100-54052013000300003

Masood, M. S., & Kronstad, W. E. (2000). Combining ability analysis over various generations in a diallel cross of bread wheat. Pakistan Journal of Agricultural Sciences, 16(1), 1–4.

McVetty, P. B. E., & Evans, L. E. (1980). Breeding methodology in wheat. II. Productivity, harvest index, and height measured on F2 spaced plants for yield selection in spring wheat. Crop Science, 20(5), 587–589. https://doi.org/10.2135/cropsci1980.0011183X002000050010x

Merrick, L. F., Herr, A. W., Sandhu, K. S., Lozada, D. N., & Carter, A. H. (2022). Utilizing genomic selection for wheat population development and improvement. Agronomy, 12(2), Article 522. https://doi.org/10.3390/agronomy12020522

Pagliosa, E. S., Benin, G., Beche, E., Silva, C. L., Milioli, A. S., & Tonatto, M. (2017). Identifying superior spring wheat genotypes through diallel approaches. Australian Journal of Crop Science, 11(1), 112–117. https://doi.org/10.21475/ajcs.2017.11.01.289

Pasinato, A., Cunha, G. R., Fontana, D. C., Monteiro, J. E. B. A., Nakai, A. M., & Oliveira, A. F. (2018). Potential area and limitations for expansion of rainfed wheat in the Cerrado biome of Central Brazil. Pesquisa Agropecuária Brasileira, 53(7), 779–790. https://doi.org/10.1590/s0100-204x2018000700001

Pelegrin, A. J., Nardino, M., Carvalho, I. R., Szareski, V. J., Ferrari, M., Conte, G. G., Oliveira, A. C., Souza, V. Q., & Maia, L. C. (2020). Combining ability as a criterion for wheat parents selection. Functional Plant Breeding Journal, 2(1), 35–45. https://doi.org/10.35418/2526-4117/v2n1a4

Pereira, J. F., Cunha, G. R., & Moresco, E. R. (2019). Improved drought tolerance in wheat is required to unlock the production potential of the Brazilian Cerrado. Crop Breeding and Applied Biotechnology, 19(2), 217–225. https://doi.org/10.1590/1984-70332019v19n2r30

Pimentel, A. J. B., Guimarães, J. F. R., Souza, M. A., Resende, M. D. V., Moura, L. M., Rocha, J. R. A. S. C., & Ribeiro, G. (2014). Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, 49(11), 882–890. https://doi.org/10.1590/S0100-204X2014001100007

Pimentel, A. J. B., Souza, M. A., Carneiro, P. C. S., Rocha, J. R. A. S. C., Machado, J. C., & Ribeiro, G. (2013). Análise dialélica parcial em gerações avançadas para seleção de populações segregantes de trigo. Pesquisa Agropecuária Brasileira, 48(12), 1555–1561. https://doi.org/10.1590/S0100-204X2013001200004

R Development Core Team. (2020). R: a language and environment for statistical computing. R Fundation for Statistical Computing, Vienna.

Resende, M. D. V. (2002). Genética biométrica e estatística no melhoramento de plantas perenes. Brasília, DF: Embrapa Informação Tecnológica.

Resende, M. D. V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330–339. https://doi.org/10.1590/1984-70332016v16n4a49

Resende, M. D. V. (2017). Selegen Reml/Blup – Sistema Estatístico e Seleção Genética Computadorizada. Manual Complementar do Selegen-Reml/Blup 2017. Embrapa Informação Tecnológica.

Resende, M. D. V., & Duarte, J. B. (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37(3), 182–194.

Richards, R. A., Cavanagh, C. R., & Riffkin, P. (2019). Selection for erect canopy architecture can increase yield and biomass of spring wheat. Field Crops Research, 244, 107649. https://doi.org/10.1016/j.fcr.2019.107649

RNC – Registro Nacional de Cultivares. (2022, March 03). CultivarWeb – Triticum aestivum. https://sistemasweb.agricultura.gov.br/pages/SNPC_CW.html

Sharifi, P., Mohammadi, M., & Karimizadeh, R. (2019). Biplot analysis of diallel crosses for yield and some of morphological traits in wheat. Vegetos, 32, 420–430. https://doi.org/10.1007/s42535-019-00046-z

Shewry, P. R., Pellny, T. K., & Lovegrove, A. (2016). Is modern wheat bad for health? Nature Plants, 2(7), 16097. https://doi.org/10.1038/nplants.2016.97

Subandi, Compton, W. A., & Empig, L. T. (1973). Comparison of the efficiencies of selection indices for three traits in two variety crosses of corn. Crop Science, 13(2), 184–186. https://doi.org/10.2135/cropsci1973.0011183X001300020011x

USDA – United States Department of Agriculture. (2018). World Agricultural Outlook Board. https://www.usda.gov/oce/commodity-markets/waob

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

How to Cite

APA

Caletti Mezzomo, H., Casagrande, C. R., Machado e Silva, C., Lima, G. W., Borém, A. and Nardino, M. (2022). Combining ability and selection of wheat populations for a tropical environment. Agronomía Colombiana, 40(2), 174–185. https://doi.org/10.15446/agron.colomb.v40n2.99390

ACM

[1]
Caletti Mezzomo, H., Casagrande, C.R., Machado e Silva, C., Lima, G.W., Borém, A. and Nardino, M. 2022. Combining ability and selection of wheat populations for a tropical environment. Agronomía Colombiana. 40, 2 (May 2022), 174–185. DOI:https://doi.org/10.15446/agron.colomb.v40n2.99390.

ACS

(1)
Caletti Mezzomo, H.; Casagrande, C. R.; Machado e Silva, C.; Lima, G. W.; Borém, A.; Nardino, M. Combining ability and selection of wheat populations for a tropical environment. Agron. Colomb. 2022, 40, 174-185.

ABNT

CALETTI MEZZOMO, H.; CASAGRANDE, C. R.; MACHADO E SILVA, C.; LIMA, G. W.; BORÉM, A.; NARDINO, M. Combining ability and selection of wheat populations for a tropical environment. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 174–185, 2022. DOI: 10.15446/agron.colomb.v40n2.99390. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/99390. Acesso em: 16 jul. 2024.

Chicago

Caletti Mezzomo, Henrique, Cleiton Renato Casagrande, Caique Machado e Silva, Gabriel Wolter Lima, Aluízio Borém, and Maicon Nardino. 2022. “Combining ability and selection of wheat populations for a tropical environment”. Agronomía Colombiana 40 (2):174-85. https://doi.org/10.15446/agron.colomb.v40n2.99390.

Harvard

Caletti Mezzomo, H., Casagrande, C. R., Machado e Silva, C., Lima, G. W., Borém, A. and Nardino, M. (2022) “Combining ability and selection of wheat populations for a tropical environment”, Agronomía Colombiana, 40(2), pp. 174–185. doi: 10.15446/agron.colomb.v40n2.99390.

IEEE

[1]
H. Caletti Mezzomo, C. R. Casagrande, C. Machado e Silva, G. W. Lima, A. Borém, and M. Nardino, “Combining ability and selection of wheat populations for a tropical environment”, Agron. Colomb., vol. 40, no. 2, pp. 174–185, May 2022.

MLA

Caletti Mezzomo, H., C. R. Casagrande, C. Machado e Silva, G. W. Lima, A. Borém, and M. Nardino. “Combining ability and selection of wheat populations for a tropical environment”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 174-85, doi:10.15446/agron.colomb.v40n2.99390.

Turabian

Caletti Mezzomo, Henrique, Cleiton Renato Casagrande, Caique Machado e Silva, Gabriel Wolter Lima, Aluízio Borém, and Maicon Nardino. “Combining ability and selection of wheat populations for a tropical environment”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 174–185. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/99390.

Vancouver

1.
Caletti Mezzomo H, Casagrande CR, Machado e Silva C, Lima GW, Borém A, Nardino M. Combining ability and selection of wheat populations for a tropical environment. Agron. Colomb. [Internet]. 2022 May 1 [cited 2024 Jul. 16];40(2):174-85. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/99390

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

331

Downloads

Download data is not yet available.