Published

2025-08-31

Antifungal effect of limonene against different pathogenic Fusarium species

Efecto antifúngico del limoneno sobre diferentes especies patógenas de Fusarium

DOI:

https://doi.org/10.15446/agron.colomb.v43n2.120340

Keywords:

pathogen control, essential oil, Fusariun head blight, wheat (en)
control de patógenos, aceite esencial, fusariosis de la espiga, trigo (es)

Downloads

Authors

  • Luciana Belén Silvestro Universidad Nacional del Centro de la Provincia de Buenos Aires - Facultad de Agronomía - Instituto de Biología Funcional y Biotecnología - BIOLAB, INBIOTEC-CONICET, UNCPBA-CICPBA - Buenos Aires https://orcid.org/0000-0002-5687-1150
  • Maximiliano Javier Cardarelli Universidad Nacional del Centro de la Provincia de Buenos Aires - Facultad de Agronomía - Instituto de Biología Funcional y Biotecnología - BIOLAB - Buenos Aires https://orcid.org/0009-0001-4831-1508
  • Fátima Soledad Ferreyro Universidad Nacional del Centro de la Provincia de Buenos Aires - Facultad de Agronomía - Instituto de Biología Funcional y Biotecnología - Buenos Aires, Argentina https://orcid.org/0009-0002-1142-6990
  • Cristina Soledad Merlos Universidad Nacional del Centro de la Provincia de Buenos Aires - Facultad de Agronomía - Instituto de Biología Funcional y Biotecnología - BIOLAB, INBIOTEC-CONICET, UNCPBA-CICPBA - Buenos Aires https://orcid.org/0000-0003-3835-6777
  • María Virginia Moreno Universidad Nacional del Centro de la Provincia de Buenos Aires - Facultad de Agronomía - Instituto de Biología Funcional y Biotecnología - BIOLAB, INBIOTEC-CONICET, UNCPBA-CICPBA - Buenos Aires https://orcid.org/0000-0003-0977-3512

Alternative control methods of fungal diseases have been studied with an emphasis on finding new compounds derived from plants, such as essential oils and extracts, which are considered safer for consumers and the environment. Limonene, a cyclic monoterpene widely found in nature, is the main component of essential oils obtained from the peels of citrus fruits such as grapefruit, lemon, lime, and particularly orange. Despite its prevalence and its use as an antifungal agent, especially against fungi that cause diseases in major crops worldwide, studies on its application in greenhouse assays have been limited. The aim of this research was to evaluate the antifungal activity of limonene against cereal-pathogenic Fusarium species and to assess its effectiveness in controlling Fusarium head blight through plant bioassays. Limonene inhibited mycelial growth in vitro for all tested species, showing effective fungistatic action on pathogens. Regarding plant bioassays, the most significant effect was observed when limonene was applied simultaneously with and after the pathogen, indicating that limonene is not acting as a defense-inducing agent in the plant but directly on the pathogen. When limonene was applied before the pathogen, no significant inhibition of incidence was detected. Further studies are necessary to explore the use of limonene in controlling Fusarium head blight in major crops such as Triticum aestivum L. This study presents promising results for controlling this disease using limonene.

Se han estudiado métodos alternativos para el control de enfermedades, con énfasis en la búsqueda de nuevos compuestos derivados de plantas, como aceites esenciales y extractos, que se consideran más seguros para los consumidores y el medio ambiente. El limoneno, un monoterpeno cíclico ampliamente encontrado en la naturaleza, es el principal componente de los aceites esenciales obtenidos de las cáscaras de frutas cítricas como pomelo, limón, lima y, en particular, naranja. A pesar de su prevalencia, su uso como antifúngico, especialmente contra hongos que causan enfermedades en cultivos extensivos a nivel mundial, y los estudios sobre su aplicación en ensayos bajo invernadero han sido poco explorados. El objetivo de este trabajo fue evaluar la actividad antifúngica del limoneno contra especies de Fusarium patógenas de cereales y evaluar su eficacia mediante bioensayos en plantas. El limoneno inhibió el crecimiento micelial in vitro en todas las especies analizadas, mostrando su eficaz acción fungistática sobre los patógenos. El efecto más significativo se observó cuando el terpeno se aplicó simultáneamente con y después del patógeno. Esto indicaría que el limoneno no estaría ejerciendo una acción como agente inductor de defensa en la planta, sino que su acción es directa sobre el patógeno, dado que en el tratamiento en el que se aplicó limoneno antes del patógeno, no se detectó una inhibición significativa en su incidencia. Se requieren más estudios para explorar el uso del limoneno en el control de la fusariosis de la espiga en cultivos extensivos como Triticum aestivum L. Este trabajo presenta resultados alentadores y prometedores para el control de esta enfermedad mediante el uso del limoneno..

References

Achimón, F., Leal, L. E., Pizzolitto, R. P., Brito, V. D., Alarcón, R., Omarini, A. B., & Zygadlo, J. A. (2022). Insecticidal and antifungal effects of lemon, orange, and grapefruit peel essential oils from Argentina. AgriScientia, 39, 71−82. https://doi.org/10.31047/1668.298x.v39.n1.33777

Bai, G., & Shaner, G. (1994). Scab of wheat: Prospects for control. Plant Disease, 78(8), 760−766. https://doi.org/10.1094/PD-78-0760

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Brennan, J. M., Leonard, G., Fagan, B., Cooke, B. M., Ritieni, A., Ferracane, R., Nicholson, P., Simpson, D., Thomsett, M., & Doohan, F. M. (2007). Comparison of commercial European wheat cultivars to Fusarium infection of head and seedling tissue. Plant Pathology, 56(1), 55–64. https://doi.org/10.1111/j.1365-3059.2006.01458.x

Castañares, E., Dinolfo, M. I., Moreno, M. V., Berón, C., & Stenglein, S. A. (2013). Fusarium cerealis associated with barley seeds in Argentina. Journal of Phytopathology, 161(7-8), 586−589. https://doi.org/10.1111/jph.12097

Castañares, E., Dinolfo, M. I., Ponte, E. M., Pand, D., & Stenglein, S. A. (2016). Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathology, 65(6), 930–939. https://doi.org/10.1111/ppa.12470

Castañares, E., Wehrhahne, L., & Stenglein, S. A. (2012). Fusarium pseudograminearum associated with barley kernels in Argentina. Plant Disease, 96(5), 763−763. https://doi.org/10.1094/PDIS-01-12-0050-PDN

Champeil, A., Fourbel, J. F., Doré, T., & Rossignol, L. (2004). Influence of cropping system on Fusarium head blight and mycotoxin levels in winter wheat. Crop Protection, 23(6), 531−537. https://doi.org/10.1016/j.cropro.2003.10.011

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016) Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), Article 25. https://doi.org/10.3390/medicines3040025

Dinolfo, M. I., Martínez, M., Castañares, E., Vanzetti, L. S., Rossi F., Stenglein S. A., & Arata A. F. (2022). Interaction of methyl-jasmonate and Fusarium poae in bread wheat. Fungal Biology, 126(11-12), 786−792. https://doi.org/10.1016/j.funbio.2022.10.002

Di Rienzo J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2015). Grupo Infostat, FCA, Universidad Nacional de Río Cuarto. https://www.infostat.com.ar

Duschatzky, C. B., Martinez, A. N., Almeida, N. V., & Bonivardo, S. L. (2004). Nematicidal activity of the essential oils of several Argentina plants against the root-knot nematode. Journal of Essential Oil Research, 16(6), 626−628. https://doi.org/10.1080/10412905.2004.9698812

Guédez, C., Cañizalez, L., Avendaño, L., Scorza, J., Castillo, C., Olivar, R., Méndez, Y., & Sánchez, L. (2014). Actividad antifúngica del aceite esencial de naranja (Citrus sinensis L.) sobre hongos postcosecha en frutos de lechosa (Carica papaya L.). Revista de la Sociedad Venezolana de Microbiología, 34, 82−86. http://saber.ucv.ve/ojs/index.php/rev_vm/article/view/7998

Gupta, A., Jeyakumar, E., & Lawrence, R. (2021). Journey of limonene as an antimicrobial agent. Journal of Pure and Applied Microbiology, 15(3), 1094−1110. https://doi.org/10.22207/JPAM.15.3.01

Hartmans, K. J., Diepenhorst, P., Bakker, W., & Gorris, L. G. M. (1995). The use of carvone in agriculture: Sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases. Industrial Crops and Products, 4(1), 3−13. https://doi.org/10.1016/0926-6690(95)00005-W

Huang, Y., Ho, S. H., Lee H. C., & Yap, Y. L. (2002). Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 38(5), 403−412.https://doi.org/10.1016/S0022-474X(01)00042-X

Jian, Y., Chen, X., Ma, H., Zhang, C., Luo, Y., Jiang, J., & Yin, Y. (2023). Limonene formulation exhibited potential application in the control of mycelial growth and deoxynivalenol production in Fusarium graminearum. Frontiers in Microbiology, 14, Article 1161244. https://doi.org/10.3389/fmicb.2023.1161244

Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323−329. https://doi.org/10.1038/nature05286

Lenth, R. V. (2018). Emmeans: Estimated marginal means, a.k.a. least-squares means, R package version 1.3.0. https://CRAN.Rproject.org/package=emmeans

Li, G., Boontung, R., Powers, C., Belamkar, V., Huang, T., Miao, F., Baenziger, P. S., & Yan, L. (2017). Genetic basis of the very short life cycle of ‘Apogee’ wheat. BMC Genomics, 18, Article 839. https://doi.org/10.1186/s12864-017-4239-8

Li, J. L., Liu, X. Y., Xie, J. T., Di, Y. L., & Zhu, F. X. (2015). A comparison of different estimation methods for fungicide EC50 and EC95 values. Journal of Phytopathology, 163, 239–244. https://doi.org/10.1111/jph.12312

Marei, G. I. K., Rasoul, M. A. A., & Abdelgaleil, S. A. M. (2012). Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology, 103(1), 56−61. https://doi.org/10.1016/j.pestbp.2012.03.004

Martínez, M., Arata, A., Dinolfo, M. I., Lázaro, L., Welin, B., & Stenglein, S. (2024). Evaluation of PSP1 biostimulant on Fusarium graminearum-wheat pathosystem: Impact on disease parameters, grain yield, and grain quality. Pest Management Science, 80(7), 3578−3589. https://doi.org/10.1002/ps.8062

Nogueira, M. S., Decundo, J., Martinez, M., Dieguez, S. N., Moreyra, F., Moreno, M. V., & Stenglein, S. A. (2018). Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins, 10(2), Article 78. https://doi.org/10.3390/toxins10020078

Pawar, V. C., & Thaker, V. S. (2007). Evaluation of the anti-Fusarium oxysporum f. sp. cicer and anti-Alternaria porri effects of some essential oils. World Journal of Microbiology and Biotechnology, 23, 1099–1106. https://doi.org/10.1007/s11274-006-9339-6

Perczak, A., Gwiazdowska, D., Marchwińska, K., Juś, K., Gwiazdowski, R., & Waśkiewicz, A. (2019). Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Archives of Microbiology, 201, 1085–1097. https://doi.org/10.1007/s00203-019-01673-5

Pérez-Mosqueda, L. M., Trujillo-Cayado, L. A., Carrillo, F., Ramirez, P., & Muñoz, J. (2015). Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene. Colloids and Surface B: Biointerface. 128, 127−131. https://doi.org/10.1016/j.colsurfb.2015.02.030

Ravichandran, C., Badgujar, P. C., Gundev, P., & Upadhyay, A. (2018). Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food and Chemical Toxicology, 120, 668−680. https://doi.org/10.1016/j.fct.2018.07.052

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Shude, S. P. N., Yobo, K. S., & Mbili, N. C. (2020). Progress in the management of Fusarium head blight of wheat: An overview. South African Journal of Science, 116(11/12), 1−7. https://doi.org/10.17159/sajs.2020/7854

Taheri, P., Soweizy, M., & Tarighi, S. (2023). Application of essential oils to control some important fungi and bacteria pathogenic on cereals. Journal of Natural Pesticide Research, 6, Article 100052. https://doi.org/10.1016/j.napere.2023.100052

Thakur, M., & Sohal, B. S. (2012). Role of elicitors in inducing resistance in plants against pathogen infection: A review. Biochemistry, 2013, Article 762412. https://doi.org/10.1155/2013/762412

Tini, F., Beccari, G., Onofri, A., Ciavatta, E., Gardiner, D. M., & Covarelli, L. (2020). Fungicides may have differential efficacies towards the main causal agents of Fusarium head blight of wheat. Pest Management Science, 76(11), 3738−3748. https://doi.org/10.1002/ps.5923

Tsao, R., & Zhou, T. (2000). Antifungal activity of monoterpenoids against postharvest pathogens Botrytis cinerea and Monilinia fructicola. Journal of Essential Oil Research, 12(1), 113–121. https://doi.org/10.1080/10412905.2000.9712057

Ünal, M. U., Ücan, F., Şener, A., & Dinçer, S., (2012). Research on antifungal and inhibitory effects of DL-limonene on some yeasts. Turkish Journal of Agriculture and Forestry, 36(5), 576−582. https://doi.org/10.3906/tar-1104-41

Wiese, M. V. (1987). Compendium of wheat diseases (2nd ed.). The American Phytopathological Society Press, St Paul. https://archive.org/search.php?query=external-identifier%3A%22urn%3Aoclc%3Arecord%3A742800815%22

Xu, X. (2003). Effects of environmental conditions on the developmentbof Fusarium ear blight. European Journal of Plant Pathology, 109, 683−689. https://doi.org/10.1023/A:1026022223359

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415−421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Zaker, M. (2016). Natural plant products as eco-friendly fungicides for plant diseases control - a review. The Agriculturists, 14(1), 134−141. https://doi.org/10.3329/agric.v14i1.29111

Zhou, H., Tao, N., & Jia, L. (2014). Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii. Food Control, 37, 277−283. https://doi.org/10.1016/j.foodcont.2013.09.057

How to Cite

APA

Silvestro, L. B., Cardarelli, M. J., Ferreyro, F. S., Merlos, C. S. & Moreno, M. V. (2025). Antifungal effect of limonene against different pathogenic Fusarium species. Agronomía Colombiana, 43(2). https://doi.org/10.15446/agron.colomb.v43n2.120340

ACM

[1]
Silvestro, L.B., Cardarelli, M.J., Ferreyro, F.S., Merlos, C.S. and Moreno, M.V. 2025. Antifungal effect of limonene against different pathogenic Fusarium species. Agronomía Colombiana. 43, 2 (May 2025). DOI:https://doi.org/10.15446/agron.colomb.v43n2.120340.

ACS

(1)
Silvestro, L. B.; Cardarelli, M. J.; Ferreyro, F. S.; Merlos, C. S.; Moreno, M. V. Antifungal effect of limonene against different pathogenic Fusarium species. Agron. Colomb. 2025, 43.

ABNT

SILVESTRO, L. B.; CARDARELLI, M. J.; FERREYRO, F. S.; MERLOS, C. S.; MORENO, M. V. Antifungal effect of limonene against different pathogenic Fusarium species. Agronomía Colombiana, [S. l.], v. 43, n. 2, 2025. DOI: 10.15446/agron.colomb.v43n2.120340. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/e120340. Acesso em: 15 nov. 2025.

Chicago

Silvestro, Luciana Belén, Maximiliano Javier Cardarelli, Fátima Soledad Ferreyro, Cristina Soledad Merlos, and María Virginia Moreno. 2025. “Antifungal effect of limonene against different pathogenic Fusarium species”. Agronomía Colombiana 43 (2). https://doi.org/10.15446/agron.colomb.v43n2.120340.

Harvard

Silvestro, L. B., Cardarelli, M. J., Ferreyro, F. S., Merlos, C. S. and Moreno, M. V. (2025) “Antifungal effect of limonene against different pathogenic Fusarium species”, Agronomía Colombiana, 43(2). doi: 10.15446/agron.colomb.v43n2.120340.

IEEE

[1]
L. B. Silvestro, M. J. Cardarelli, F. S. Ferreyro, C. S. Merlos, and M. V. Moreno, “Antifungal effect of limonene against different pathogenic Fusarium species”, Agron. Colomb., vol. 43, no. 2, May 2025.

MLA

Silvestro, L. B., M. J. Cardarelli, F. S. Ferreyro, C. S. Merlos, and M. V. Moreno. “Antifungal effect of limonene against different pathogenic Fusarium species”. Agronomía Colombiana, vol. 43, no. 2, May 2025, doi:10.15446/agron.colomb.v43n2.120340.

Turabian

Silvestro, Luciana Belén, Maximiliano Javier Cardarelli, Fátima Soledad Ferreyro, Cristina Soledad Merlos, and María Virginia Moreno. “Antifungal effect of limonene against different pathogenic Fusarium species”. Agronomía Colombiana 43, no. 2 (May 1, 2025). Accessed November 15, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/e120340.

Vancouver

1.
Silvestro LB, Cardarelli MJ, Ferreyro FS, Merlos CS, Moreno MV. Antifungal effect of limonene against different pathogenic Fusarium species. Agron. Colomb. [Internet]. 2025 May 1 [cited 2025 Nov. 15];43(2). Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/e120340

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

102

Downloads

Download data is not yet available.