CH4 and N2O fluxes during paddy rice crop development, post-harvest, and fallow
Flujos del CH4 y N2O durante el desarrollo del cultivo de arroz, post-cosecha y barbecho
DOI:
https://doi.org/10.15446/agron.colomb.v41n1.107053Keywords:
greenhouse gases, diurnal flux variation, continuous water management (en)gases de efecto invernadero, variación diurna del flujo, manejo continuo del agua (es)
Downloads
Paddy fields are major sources of greenhouse gases, mainly methane (CH4) and nitrous oxide (N2O). Defining the sampling times for determining the average diurnal emission rates is an important step in optimizing field measurement, avoiding the influence of possible peaks. With this purpose, diurnal gas measurements (CH4 and N2O) were taken using the static chamber method during five 24 h-periods (campaigns), every 2 h, at three rice crop development stages (R2, C1 campaign; R5, C2 campaign, and R8, C3 campaign), and in post-harvest (PH, C4 campaign) and in fallow (FP, C5 campaign) periods. The CH4 fluxes remained close to the average flux both at C1 (9.4 ± 1.0 mg CH4 m-2 h-1) and C2 (10.2 ± 1.4 mg CH4 m-2 h-1), allowing the gas sampling at any time of the day, except at 5:00 p.m. when a peak was observed at C1. As the CH4 fluxes for C3, C4, and C5 were close to zero, no average value was identified. The average N2O fluxes were low at C1 (1.0 ± 5.7 μg N2O m-2 h-1) and at C4 (6.7 ± 2.6 μg N2O m-2 h-1), increasing at C2 (26.9 ± 9.3 μg N2O m-2 h-1) and C3 (21.2 ± 7.2 μg N2O m-2 h-1) and reaching higher values during the C5 campaign (73.7 ± 33.3 μg N2O m-2 h-1). In general, considering the average flux values recorded in this study, the most appropriate times for sampling N2O during the C1, C2, C3, and C4 campaigns would be from 9 p.m. to 1 a.m. and also around 11:00 a.m. Average N2O flows in fallow would be more likely around 11:00 p.m. and 11 a.m.
Los arrozales son fuentes importantes de gases de efecto invernadero, principalmente el metano (CH4) y el óxido nitroso (N2O). Definir los tiempos de muestreo para la determinación de las tasas de emisión diurna promedio es un paso importante en la optimización de la medición en campo ya que evita la influencia de posibles picos. Con este fin se realizaron mediciones diurnas de gases (CH4 y N2O) utilizando el método de cámara estática durante los periodos de muestreo (M) de 24h, cada 2h, en tres etapas de desarrollo del cultivo de arroz (R2, M1; R5, M2; y R8, M3), en los periodos post-cosecha (PH, M4) y barbecho (FP, M5). Los flujos de CH4 permanecieron cercanos al flujo promedio en M1 (9.4 ± 1.0 mg CH4 m-2 h-1) y en M2 (10.2 ± 1.4 mg CH4 m-2 h-1), permitiendo la toma de muestras de gas en cualquier momento del día, excepto a las 5:00 p.m., cuando se observó un pico en M1. Como los flujos de CH4 para M3, M4 y M5 fueron cercanos a cero, no se identificó un valor promedio. Los flujos de N2O fueron bajos en M1 (1.0 ± 5.7 μg N2O m-2 h-1) y en M4 (6.7 ± 2.6 μg N2O m-2 h-1), aumentando en M2 (26.9 ± 9.3 μg N2O m-2 h-1) y M3 (21.2 ± 7.2 μg N2O m-2 h-1) y alcanzando valores más altos en M5 (73.7 ± 33.3 μg N2O m-2 h-1, en promedio). En general, considerando los valores de flujo promedio registrados en este estudio, los momentos más apropiados para el muestreo de N2O en M1, M2, M3 y M4 serían de 9 p.m. a 1 a.m. y también alrededor de las 11:00 a.m. Los flujos promedio de N2O en el período de barbecho serían más probables cerca de las 11:00 p.m. y 11:00 a.m.
References
Aulakh, M. S., Wasmann, R., Rennenberg, H., & Fink, S. (2000). Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biology, 2(2), 182−194. https://doi.org/10.1055/s-2000-9161 DOI: https://doi.org/10.1055/s-2000-9161
Brye, K. R., Smartt, A. D., & Norman, R. J. (2017). Diurnal methane fluxes as affected by cultivar from direct-seeded, delayed-flood rice production. Journal of Environmental Protection, 8(9), 957−973. https://doi.org/10.4236/jep.2017.89060 DOI: https://doi.org/10.4236/jep.2017.89060
Costa, F. S., Bayer, C., Lima, M. A., Frighetto, R. T. S., Macedo, V. R. M., & Marcolin, E. (2008). Variação diária da emissão de metano em solo cultivado com arroz irrigado no Sul do Brasil. Ciência Rural, 38(7), 2049−2053. https://doi.org/10.1590/S0103-84782008000700041 DOI: https://doi.org/10.1590/S0103-84782008000700041
Dai, S., Ju, W., Zhang, Y., He, Q., Song, L., & Li, J. (2019). Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales. Science of the Total Environment, 690(10), 973−990. https://doi.org/10.1016/j.scitotenv.2019.07.012 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.012
Dalal, R. C., Allen, D. E., Livesley, S. J., & Richards, G. (2008). Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscape: a review. Plant and Soil, 309(1-2), 43−76. https://doi.org/10.1007/s11104-007-9446-7 DOI: https://doi.org/10.1007/s11104-007-9446-7
Das, S., & Adhya, T. K. (2012). Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biology and Biochemistry, 47, 36−45. https://doi.org/10.1016/j.soilbio.2011.11.020 DOI: https://doi.org/10.1016/j.soilbio.2011.11.020
Denmead, O. T., Freney, J. R., & Simpson, J. R. (1979). Nitrous oxide emissions during denitrification in a flooded field. Soil Science Society of America Journal, 43(4), 716−718. https://doi.org/10.2136/sssaj1979.03615995004300040017x DOI: https://doi.org/10.2136/sssaj1979.03615995004300040017x
Embrapa-Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa.
Gaihre, Y. K., Wassmann, R., Tirol-Padre, A., Villegas-Pangga, G., Aquino, E., & Kimballc, B. A. (2014). Seasonal assessment of greenhouse gas emissions from irrigated lowland rice fields under infrared warming. Agriculture, Ecosystems and Environment, 184, 88–100. https://doi.org/10.1016/j.agee.2013.11.024 DOI: https://doi.org/10.1016/j.agee.2013.11.024
Gaihre, Y. K., Wassmann, R., Villegas-Pangga, G., Sanabria, J., Aquino, E., Sta. Cruz, P. C., & Paningbatan Jr, E. P. (2016). Effects of increased temperatures and rice straw incorporation on methane and nitrous oxide emissions in a greenhouse experiment with rice. European Journal of Soil Science, 67, 868−880. https://doi.org/10.1111/ejss.12389 DOI: https://doi.org/10.1111/ejss.12389
Hou, A. X., Chen, G. X., Wang, Z. P., Van Cleemput, O., & Patrick Jr, W. H. (2000). Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal, 64(6), 2180−2186. https://doi.org/10.2136/sssaj2000.6462180x DOI: https://doi.org/10.2136/sssaj2000.6462180x
Hua, X., Guangxi, X., Cai, Z. C., & Tsuruta, H. (1997). Nitrous oxide emissions from three paddy fields in China. Nutrient Cycling in Agroecosystems, 49(1-3), 23−28. https://doi.org/10.1023/A:1009779514395 DOI: https://doi.org/10.1023/A:1009779514395
Kajiura, M., Minamikawa, K., Tokida, T., Shirato, Y., & Wagai, R. (2018). Methane and nitrous oxide emissions from paddy fields in Japan: An assessment of controlling factor using an intensive regional data set. Agriculture, Ecosystems & Environment, 252, 51−60. https://doi.org/10.1016/j.agee.2017.09.035 DOI: https://doi.org/10.1016/j.agee.2017.09.035
Liang, X. Q., Li, H., Wang, S. X., Ye, Y. S., Ji, Y. J., Tian, G. M., Van Kessel, C., & Linquist, B. A. (2013). Nitrogen management to reduce yield-scaled global warming. Field Crops Research, 146, 66−74. https://doi.org/10.1016/j.fcr.2013.03.002 DOI: https://doi.org/10.1016/j.fcr.2013.03.002
Lima, M. A., Pazianotto, R. A. A., Villela, O. V., & Paraiba, L. C. (2018). Diurnal variation of methane emission from a paddy field in Brazilian Southeast. Ciência Rural, 48(04), Article e20170054. https://doi.org/10.1590/0103-8478cr20170054 DOI: https://doi.org/10.1590/0103-8478cr20170054
Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., Van Kessel, C., & Van Groenigen, K. J. (2012). Fertilizer management practice and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Research, 135, 10−21. https://doi.org/10.1016/j.fcr.2012.06.007 DOI: https://doi.org/10.1016/j.fcr.2012.06.007
Ma, L., Liu, B., Cui, Y., & Shi, Y. (2021). Variations and drivers of methane fluxes from double-cropping paddy fields in Southern China at diurnal, seasonal and inter-seasonal timescales. Water, 13(16), Article 2171. https://doi.org/10.3390/w13162171 DOI: https://doi.org/10.3390/w13162171
Maboni, C., Bremm, T., Aguiar, L. J. G., Scivittaro, W. B., Souza, V. A., Zimermann, H. R., Teichrieb, C. A., Oliveira, P. E. S., Herdies, D. L., Degrazia, G. A., & Roberti, D. R. (2021). The fallow period plays an important role in annual CH4 emission in a rice paddy in Southern Brazil. Sustainability, 13(20), Article 11336. https://doi.org/10.3390/su132011336 DOI: https://doi.org/10.3390/su132011336
Marrenjo, G. J., Pádua, E. J., Silva, C. A., Soares, P. C., & Zinn, Y. L. (2016). Impactos do cultivo por longo tempo de arroz inundado em Gleissolos. Pesquisa Agropecuária Brasileira, 51(08), 967−977. https://doi.org/10.1590/S0100-204X2016000800009 DOI: https://doi.org/10.1590/S0100-204X2016000800009
Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, J., Prenafeta-Boldú, F. X., Saldaña-De La Vega, J. A., Catalá, M. M., & Ibáñez, C. (2018). Neglecting the fallow season can significantly underestimate annual methane emissions in Mediterranean rice fields. PLoS ONE, 13(8), Article e0202159. https://doi.org/10.1371/journal.pone.0198081 DOI: https://doi.org/10.1371/journal.pone.0202159
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 659–740). Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf DOI: https://doi.org/10.1017/CBO9781107415324.018
Pérez, C. A., Carmona, M. R., Fariña, J. M., & Armesto, J. J. (2010). Effects of nitrate and labile carbon on denitrification of Southern temperate forest soils. Chilean Journal of Agricultural Research, 70(2), 251−258. https://doi.org/10.4067/S0718-58392010000200008 DOI: https://doi.org/10.4067/S0718-58392010000200008
Sander, B. O., & Wassmann, R. (2014). Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenhouse Gas Measurement and Management, 4(1), 1−13. https://doi.org/10.1080/20430779.2014.892807 DOI: https://doi.org/10.1080/20430779.2014.892807
SAS Institute Inc. (2011). SAS/STAT® 9.3 User’s Guide, Cary, NC: SAS Institute Inc.
Schütz, H., Seiler, W., & Conrado, R. (1990). Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 11(2), 77−95. https://doi.org/10.1007/BF00002060 DOI: https://doi.org/10.1007/BF00002060
Shang, Q. Y., Yang, X. X., Gao, C. M., Wu, P. P., Liu, J. J., Xu, Y. C., Shen, Q. R., Zou, J. W., & Guo, S. W. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Global Change Biology, 17(6), 2196−2210. https://doi.org/10.1111/j.1365-2486.2010.02374.x DOI: https://doi.org/10.1111/j.1365-2486.2010.02374.x
Tan, X. Z., Shao, D. G., & Gu, W. Q. (2018). Effects of temperature and soil moisture on gross nitrification and denitrification rates in Chinese lowland paddy field soil. Paddy and Water Environment, 16, 687−698. https://doi.org/10.1007/s10333-018-0660-0 DOI: https://doi.org/10.1007/s10333-018-0660-0
Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Peñuelas, J. (2017). Factors related with CH4 and N2O emissions from a paddy field: clues for management implications. PLoS ONE, 12(1), Article e0169254. https://doi.org/10.1371/journal.pone.0169254 DOI: https://doi.org/10.1371/journal.pone.0169254
Wang, J. Y., Jia, J. X., Xiong, Z. Q., Khalil, M, A. K., & Xing, G. X. (2011). Water regime-nitrogen fertilizer-straw incorporation interaction: field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China. Agriculture, Ecosystems & Environment, 141(3−4), 437−446. https://doi.org/10.1016/j.agee.2011.04.009 DOI: https://doi.org/10.1016/j.agee.2011.04.009
Wassmann, R., Alberto, M. C., Tirol-Padre, A., Hoang, N. T., Romasanta, R., Centeno, C. A., & Sander, B. O. (2018). Increasing sensitivity of methane emission measurements in rice through deployment of ‘closed chambers’ at nighttime. PLoS ONE, 13(2), Article e0191352. https://doi.org/10.1371/journal.pone.0191352 DOI: https://doi.org/10.1371/journal.pone.0191352
Weller, S., Janz, B., Jörg, L., Kraus, D., Racela, H. S. U., Wassmann, R., Butterbach-Bahl, K., & Kiese, R. (2016). Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 22, 432−448. https://doi.org/10.1111/gcb.13099 DOI: https://doi.org/10.1111/gcb.13099
Weller, S., Kraus, D., Butterbach-Bahl, K., Wassmann, R., & Tirol-Padre, A. (2015). Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science, 178(5), 755−767. https://doi.org/10.1002/jpln.201500092 DOI: https://doi.org/10.1002/jpln.201500092
Zou, J., Huang, Y., Qin, Y., Liu, S., Shen, Q., Pan, G., Lu, Y., & Liu, Q. (2009). Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950 and 1990. Global Change Biology, 15(1), 229−242. https://doi.org/10.1111/j.1365-2486.2008.01775.x DOI: https://doi.org/10.1111/j.1365-2486.2008.01775.x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.