Published

2020-04-30

Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?

¿Puede Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmitir fitoplasmas a fresa?

DOI:

https://doi.org/10.15446/agron.colomb.v38n1.78583

Keywords:

insect vectors, DNA barcoding, cytochrome c oxidase, COI gene (en)
insectos vectores, código de barras de ADN, citocromo c oxidasa, gen COI (es)

Downloads

Authors

  • Daniela Montaño Novoa Universidad Militar Nueva Granada - Zipaquirá - Facultad de Ciencias Básicas y Aplicadas-
  • Helena Luisa Brochero Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias
  • Liliana Franco-Lara Universidad Militar Nueva Granada - Zipaquirá - Facultad de Ciencias Básicas y Aplicadas-

Phytoplasmas are plant pathogenic bacteria of the class Mollicutes that lack cell walls, are restricted to the phloem of their plant hosts, are difficult to culture, and are transmitted by insect vectors. Phytoplasmas from 16SrI and 16SrVII groups have been associated with diseases in urban trees in the Bogota plateau and with potato and strawberry crops in Cundinamarca,
Colombia. The objective of this work was to evaluate if the vector Amplicephalus funzaensis (Hemipera: Cicadellidae) could transmit phytoplasmas to Fragaria x ananassa under semi-controlled conditions. A transmission assay on F. x ananassa var. Monterrey was performed with A. funzaensis from a population naturally infected with phytoplasmas, whose host was Cenchrus clandestinus. Seven months after herbivory by these insects, the plants did not show symptoms associated to phytoplasmas, even though more than one third of the insects used carried phytoplasmas. In total, 120 A. funzaensis individuals were tested for the presence of phytoplasmas by molecular methods; of these, 46 (38%) were positive for phytoplasmas, showing the existence of insect populations with a high number of individuals that are a potential source of inoculum for the pathogen transmission. Additionally, for the molecular identification of A. funzaensis, a DNA barcode was generated from the cyitochrome c oxidase (COI) gene.

Los fitoplasmas son bacterias patógenas de plantas de la clase Mollicutes que carecen de pared celular, están restringidas al floema de sus hospederos vegetales, son difícilmente cultivables y son transmitidos por insectos vectores. Fitoplasmas de los grupos 16SrI y 16SrVII se han asociado a enfermedades en árboles urbanos de la Sabana de Bogotá y en cultivos de fresa y papa de Cundinamarca, Colombia. El objetivo de este
trabajo fue evaluar si el conocido vector Amplicephalus funzaensis (Hemipera: Cicadellidae) podía transmitir fitoplasmas a fresa Fragaria x ananassa en condiciones semicontroladas. A. funzaensis, naturalmente infectados con fitoplasmas, cuyo hospedero era Cenchrus clandestinus se utilizaron para realizar ensayos de transmisión en plantas F. x ananassa var. Monterrey. Siete meses posteriores a la herbivoría por estos insectos, las plantas no presentaban síntomas asociados a fitoplasmas, a
pesar de que más de un tercio de estos insectos portaban fitoplasmas. En total, en este trabajo se evaluaron 120 individuos de A. funzaensis para la presencia de fitoplasmas por métodos moleculares; de estos, 46 (38%) fueron positivos para fitoplasmas, mostrando la existencia de poblaciones de insectos con un número alto de individuos que son fuente potencial
de inóculo para la transmisión del patógeno. Además, para la identificación molecular de A. funzaensis, se generó un código de barras de ADN a partir de una secuencia del gen citocromo c oxidasa (COI).

References

Abeysinghe, S., P.D. Abeysinghe, C.K. de Silva, P. Udagama, K. Warawichanee, N. Aljafar, P. Kawicha, and M. Dickinson. 2016. Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Dis. 100, 2001-2010. Doi: 10.1094/PDIS-02-16-0244-RE

Aliaga, F., E. Hopp, E. Álvarez, and L.A.B. Lopez-Lavalle. 2018. First report of a ‘Candidatus Phytoplasma asteris’ isolate associated with banana elephantiasis disease in Colombia. New Dis. Rep. 37, 12. Doi: 10.5197/j.2044-0588.2018.037.012

Alma, A., F. Lessio, and H. Nicke. 2019. Insects as phytoplasma vectors: ecological and epidemiological aspects. pp. 1-26. In: Bertaccini, A., P.G. Weintraub, G.P. Rao, and N. Mori (eds.). Phytoplasmas: Plant pathogenic bacteria - II. Springer, Singapore. Doi: 10.1007/978-981-13-2832-9_1

Álvarez, E., J.F. Mejía De Los Ríos, G.A. Llano Rodríguez, J.B. Loke, A. Calari, B. Duduk, and A. Bertaccini. 2009. Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis. 93, 1139-1145. Doi: 10.1094/pdis-93-11-1139

Álvarez, E., J.F. Mejía, N. Contaldo, S. Paltrinieri, B. Duduk, and A. Bertaccini. 2014. ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Dis. 98 (3), 311-318. Doi: 10.1094/PDIS-12-12-1182-RE

Beanland, L., C.W. Hoy, S.A. Miller, and L.R. Nault. 2000. Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Ann. Entomol. Soc. Am. 93(2), 271-276. Doi: 10.1603/0013-8746(2000)093[0271:IOAYPO]2.0.CO;2

Bertaccini, A., M. Vibio, M. Pastore, S. Recupero, S. Guerrini, and D. Grimaldi. 1997. Nested-PCR assays for detection of phytoplasmas in strawberry. Acta Hortic. 439, 787-790. Doi: 10.17660/ActaHortic.1997.439.130

Bertaccini, A. and B. Duduk. 2009. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol. Mediterr. 48, 355-378.

Bertaccini, A., B. Duduk, S. Paltrinieri, and N. Contaldo. 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am. J. Plant Sci. 5, 1763-1788. Doi: 10.4236/ajps.2014.512191

Bosco, D. and R. D’Amelio. 2010. Transmission specificity and competition of multiple phytoplasmas in the insect vector. pp. 293-308. In: Weintraub, P.G., and P. Jones (eds.). Phytoplasmas: Genomes, plant hosts and vectors. First edition. CAB International, London. Doi: 10.1079/9781845935306.0293

Bressan, A., V. Girolami, and E. Boudon-Padieu. 2005. Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomol. Exp. Appl. 115, 283-290. Doi: 10.1111/j.1570-7458.2005.00240.x

Christensen, N.M., M. Nicolaisen, M. Hansen, and A. Schulz. 2004. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol. Plant-Microbe In. 17, 1175-1184. Doi: 10.1094/MPMI.2004.17.11.1175

Contaldo, N., E. Satta, Y. Zambon, S. Paltrinieri, and A. Bertaccini. 2016. Development and evaluation of different complex media for phytoplasma isolation and growth. J. Microbiol. Methods 127, 105-110. Doi: 10.1016/j.mimet.2016.05.031

D’Amelio, R., C. Marzachi, and D. Bosco. 2007. Double infection of ‘Candidatus Phytoplasma asteris’ and “flavescence dorée” phytoplasma in the vector Euscelidius variegatus. B. Insectol. 60, 223-224.

Danet, J.L., X. Foissac, L. Zreik, P. Salar, E. Verdin, J.G. Nourrisseau, and M. Garnier. 2003. “Candidatus Phlomobacter fragariae” is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the plant hopper Cixius wagneri (China). Phytopathology 93, 644-649. Doi: 10.1094/PHYTO.2003.93.6.644

Dietrich, C.H. 2005. Keys to the families of Cicadomorpha and subfamilies and tribes of Cicadellidae (Hemiptera: Auchenorrhyncha). Florida Entomol. 88, 502-517. Doi: 10.1653/0015-4040(2005)88[502:KTTFOC]2.0.CO;2

Duduk, B., J.F. Mejia, A. Calari, and A. Bertaccini. 2008a. Identification of 16SrIX group phytoplasmas infecting Colombian periwinkles and molecular characterization on several genes. IOM 17th International Congress. 2008, July 6-11; Tienjin, China.

Duduk, B., J.F. Mejia, S. Paltrinieri, N. Contaldo, E. Alvarez, F. Varon, and A. Bertaccini. 2008b. Molecular differentiation of phytoplasmas affecting corn in Colombia and Serbia. Second International Phytoplasma Workshop. 2008, September 22- 26; La Havana.

Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294-299.

Franco-Lara, L. and L.M. Perilla-Henao. 2014. Phytoplasma diseases in trees of Bogotá, Colombia: a serious risk for urban trees and crops. pp. 90-100. In: A. Bertaccini (ed.). Phytoplasmas and phytoplasma disease management: how to reduce their economic impact. International Phytoplasmologist Working Group, Italy.

Franco-Lara, L., N. Contaldo, J. Mejia, S. Paltrinieri, B. Duduk, and A. Bertaccini. 2017. Detection and identification of phytoplasmas associated with declining Liquidambar styraciflua trees in Colombia. Trop. Plant Pathol. 42, 352-361. Doi: 10.1007/s40858-017-0170-4

Galetto, L., M. Nardi, P. Saracco, A. Bressan, C. Marzachi, and D. Bosco. 2009. Variation in vector competency depends on chrysanthemum yellows phytoplasma distribution within Euscelidius variegatus. Entomol. Exp. Appl. 131, 200-207. Doi: 10.1111/j.1570-7458.2009.00845.x

Galetto, L., D. Miliordos, C. Roggia, M. Rashidi, D. Sacco, C. Marzachi, and D. Bosco. 2014. Acquisition capability of the grapevine Flavescence dorée by the leafhopper vector Scaphoideus titanus Ball correlates with phytoplasma titre in the source plant. J. Pest Sci. 87, 671-679. Doi: 10.1007/s10340-014-0593-3

Galvis, C.A., J.E. Leguizamón, A.L. Gaitán, J.F. Mejía, E. Alvarez, and J. Arroyave. 2007. Detection and identification of a 16SrIIIrelated phytoplasma associated with coffee crispiness disease in Colombia. Plant Dis. 91, 248-252. Doi: 10.1094/PDIS-91-3-0248

Gundersen, D.E. and I.M. Lee. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primers pairs. Phytopathol. Mediterr. 35, 44-151.

Harrison, N.A., D.E. Legard, R. DiBonito, and P.A. Richardson. 1997. Detection and differentiation of phytoplasmas associated with diseases of strawberry in Florida. Plant Dis. 81, 230-230. Doi: 10.1094/PDIS.1997.81.2.230B

Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. The College of Agriculture University of California, Berkeley, USA.

Hogenhout, S., K. Oshima, E. Ammar, S. Kakizawa, H. Kingdom, and S. Namba. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9, 403-423. Doi: 10.1111/j.1364-3703.2008.00472.x

Hung, T.H., S.C. Hung, C.N. Chen, M.H. Hsu, and H.J. Su. 2004. Detection by PCR of ‘Candidatus Liberibacter asiaticus’, the bacterium causing Citrus Huanglongbing in vector psyllids: application to the study of vector-pathogen relationships. Plant Pathol. 53, 96-102. Doi: 10.1111/j.1365-3059.2004.00948.x

IRPCM. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54, 1243-1255. Doi: 10.1099/ijs.0.02854-0

Jomantiene, R., J.L. Maas, E.L. Dally, and R.E. Davis. 1999. First report of clover yellow edge and STRAWB2 phytoplasmas in strawberry in Maryland. Plant Dis. 83, 1072-1072. Doi: 10.1094/PDIS.1999.83.11.1072C

Lee, I.M., D.E. Gundersen-Rindal, R.E. Davis, and I.M. Bartoszyk. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Evol. Microbiol. 48, 1153-1169. Doi: 10.1099/00207713-48-4-1153

Lee, I.M., R.E. Davis, and D.E. Gundersen-Rindal. 2000. Phytoplasma: Phytopathogenic Mollicutes. Annu. Rev. Microbiol. 54, 221-255. Doi: 10.1146/annurev.micro.54.1.221

Lee, I.M., D.E. Gundersen-Rindal, R.E. Davis, K.D. Bottner, C. Marcone, and E. Seemüller. 2004. ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 54, 1037-1048. Doi: 10.1099/ijs.0.02843-0

Linnavuori, R. 1959. Revision of the neotropical Deltocephalinae and some related subfamilies (Homoptera). Societas Zoologica Botanica Fennica “Vanamo”, Helsinki.

Maggi, F., L. Galetto, C. Marzachì, and D. Bosco. 2014. Temperature- dependent transmission of ‘Candidatus phytoplasma asteris’ by the vector leafhopper Macrosteles quadripunctulatus Kirschbaum. Entomologia 2, 87-94. Doi: 10.4081/entomologia.2014.202

Mejía, J.F., N. Contaldo, S. Paltrinieri, J.M. Pardo, C.A. Rios, E. Alvarez, and A. Bertaccini. 2011. Molecular detection and identification of group 16SrV and 16SrXII phytoplasmas associated with potatoes in Colombia. B. Insectol. 64(Suppl.), S97-S98.

Mejía, J.F., S. Paltrinieri, E. Rincón, C.M. Ospina, A. Gaitán, J.M. Pardo, E. Alvarez, and A. Bertaccini. 2014. Coffee crispiness and nogal cafetero witches’ broom associated with ‘Candidatus Phytoplasma pruni’-related strains in Colombia: multilocus gene characterization. pp 101-108. In: A. Bertaccini (ed.). Phytoplasmas and phytoplasma disease management: how to reduce their economic impact. International Phytoplasmologist Working Group, Italy.

Murral, D.J., L.R. Nault, C.W. Hoy, L.V. Madden, and S.A. Miller. 1996. Effects of temperature and vector age on transmission of two Ohio strains of aster yellows phytoplasma by the aster leafhopper (Homoptera: Cicadellidae). J. Econ. Entomol. 89, 1223-1232. Doi: 10.1093/jee/89.5.1223

Oxelman, B., M. Liden, and D. Berglund. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Pl. Syst. Evol. 206, 393-410. Doi: 10.1007/BF00987959

Padovan, A., K. Gibb, and D. Persley. 1998. Phytoplasmas associated with diseases in strawberry. Australas. Plant Pathol. 27, 280. Doi: 10.1071/AP98036

Padovan, A., K. Gibb, and D. Persley. 2000. Association of ‘Candidatus Phytoplasma australiense’ with green petal and lethal yellows diseases in strawberry. Plant Pathol. 49, 362-368. Doi: 10.1046/j.1365-3059.2000.00461.x

Palermo, S., A. Arzone, and D. Bosco. 2001. Vector-pathogen-host plant relationship of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomol. Exp. Appl. 99, 347-354. Doi: 10.1046/j.1570-7458.2001.00834.x

Pérez-López, E., M. Luna-Rodríguez, C. Olivier, and T. Dumonceaux. 2016. The underestimated diversity of phytoplasmas in Latin America. Int. J. Syst. Evol. Microbiol. 66, 492-513. Doi: 10.1099/ijsem.0.000726

Perilla-Henao, L.M., M. Dickinson, and L. Franco-Lara. 2012. First report of ‘Candidatus Phytoplasma asteris’ affecting woody hosts (Fraxinus uhdei, Populus nigra, Pittosporum undulatum and Croton spp.) in Colombia. Plant Dis. 96, 1372. Doi: 10.1094/PDIS-03-12-0290-PDN

Perilla-Henao, L.M. and L. Franco-Lara. 2013. Especies arbóreas de las familias Euphorbiaceae, Pittosporaceae y Salicaceae son infectadas por ‘Ca. Phytoplasma fraxini’ y ‘Ca. Phytoplasma asteris᾿ en infecciones mixtas en Bogotá, Colombia. Rev. Fac. Cienc. Bas. 9, 248-265. Doi: 10.18359/rfcb.386

Perilla-Henao, L.M. and L. Franco-Lara. 2014. Phytoplasmas 16SrI and 16SrVII of urban trees of Bogotá infect strawberries in the Sabana de Bogotá, Colombia. 47 Congreso Brasileiro de Fitopatología. 2014, August 17-22; Londrina, Brazil.

Perilla-Henao, L.M. and C.L. Casteel. 2016. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant Sci. 7, 1-15. Doi: 10.3389/fpls.2016.01163

Perilla-Henao, L.M., M.R. Wilson, and L. Franco-Lara. 2016. Leafhoppers Exitianus atratus and Amplicephalus funzaensis transmit phytoplasmas of groups 16SrI and 16SrVII in Colombia. Plant Pathol. 65, 1200-1209. Doi: 10.1111/ppa.12490

Purcell, A.H., J. Richardson, and A. Finlay. 1981. Multiplication of the agents of X-disease in a non-vector leafhopper Macrosteles fascifrons. Ann. Appl. Biol. 99, 283-289. Doi: 10.1111/j.1744-7348.1981.tb04797.x

Rashidi, M., L. Galetto, D. Bosco, A. Bulgarelli, M. Vallino, F. Veratti, and C. Marzachì. 2015. Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol. 15, 193. Doi: 10.1186/s12866-015-0522-5

Ratnasingham, S. and P.D.N. Hebert. 2007. BOLD: the Barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 7, 355-364. Doi: 10.1111/j.1471-8286.2007.01678.x

Siddique, A.B.M., J.N. Guthrie, K.B. Walsh, D.T. White and P.T. Scott. 1998. Histopathology and within-plant distribution of the phytoplasma associated with Australian papaya dieback. Plant Dis. 82, 1112-1120. Doi: 10.1094/PDIS.1998.82.10.1112

Silva-Castaño, A.F., M.R. Wilson, H.L. Brochero, and L. Franco-Lara. 2019. Biodiversity, bugs and barcodes: the Cicadellidae associated with grassland and phytoplasmas in the Sabana de Bogotá, Colombia. Fla. Entomol. 102, 755-762. Doi: 10.1653/024.102.0413

Takiya, D., P. Tran, C. Dietrich, and N. Moran. 2006. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemptera: Cicadellidae) and their duel bacterial symbionts. Mol. Ecol. 15, 4175-4191. Doi: 10.1111/j.1365-294X.2006.03071.x

Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 12, 2725-2729. Doi: 10.1093/molbev/mst197

Valiunas, D., J. Staniulis, and R. Davis. 2006. ‘Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria × ananassa. Int. J. Syst. Evol. Microbiol. 56, 277-281. Doi: 10.1099/ijs.0.63935-0

Varela, C. and L. Franco-Lara. 2017. Evidencia de fitoplasmas asociados a una nueva enfermedad de papa en Cundinamarca.VII Congreso de Horticultura, 2017 November 15-17, Cajica, Colombia.

Vega, F.E., R.E. Davis, P. Barbosa, E.L. Dally, A.H. Purcell, and I.M. Lee. 1993. Detection of a plant pathogen in a non-vector insect species by the polymerase chain reaction. Phytopathology 83, 621-624. Doi: 10.1094/Phyto-83-621

Webb, D.R., R.G. Bonfiglioli, L. Carraro, R. Osler, and R.H. Symons. 1999. Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89, 894-901. Doi: 10.1094/PHYTO.1999.89.10.894

Weintraub, P.G. and L. Beanland. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51, 91-111. Doi: 10.1146/annurev.ento.51.110104.151039

Weintraub, P. 2007. Insect vector of phytoplasmas and their control- an update. Bull. Insectol. 60(2), 169-173.

How to Cite

APA

Montaño Novoa, D., Brochero, H. L. and Franco-Lara, L. (2020). Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?. Agronomía Colombiana, 38(1), 73–84. https://doi.org/10.15446/agron.colomb.v38n1.78583

ACM

[1]
Montaño Novoa, D., Brochero, H.L. and Franco-Lara, L. 2020. Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?. Agronomía Colombiana. 38, 1 (Jan. 2020), 73–84. DOI:https://doi.org/10.15446/agron.colomb.v38n1.78583.

ACS

(1)
Montaño Novoa, D.; Brochero, H. L.; Franco-Lara, L. Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?. Agron. Colomb. 2020, 38, 73-84.

ABNT

MONTAÑO NOVOA, D.; BROCHERO, H. L.; FRANCO-LARA, L. Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?. Agronomía Colombiana, [S. l.], v. 38, n. 1, p. 73–84, 2020. DOI: 10.15446/agron.colomb.v38n1.78583. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/78583. Acesso em: 15 jul. 2024.

Chicago

Montaño Novoa, Daniela, Helena Luisa Brochero, and Liliana Franco-Lara. 2020. “Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?”. Agronomía Colombiana 38 (1):73-84. https://doi.org/10.15446/agron.colomb.v38n1.78583.

Harvard

Montaño Novoa, D., Brochero, H. L. and Franco-Lara, L. (2020) “Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?”, Agronomía Colombiana, 38(1), pp. 73–84. doi: 10.15446/agron.colomb.v38n1.78583.

IEEE

[1]
D. Montaño Novoa, H. L. Brochero, and L. Franco-Lara, “Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?”, Agron. Colomb., vol. 38, no. 1, pp. 73–84, Jan. 2020.

MLA

Montaño Novoa, D., H. L. Brochero, and L. Franco-Lara. “Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?”. Agronomía Colombiana, vol. 38, no. 1, Jan. 2020, pp. 73-84, doi:10.15446/agron.colomb.v38n1.78583.

Turabian

Montaño Novoa, Daniela, Helena Luisa Brochero, and Liliana Franco-Lara. “Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?”. Agronomía Colombiana 38, no. 1 (January 1, 2020): 73–84. Accessed July 15, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/78583.

Vancouver

1.
Montaño Novoa D, Brochero HL, Franco-Lara L. Can Amplicephalus funzaensis Linnavuori 1968 (Hemiptera: Cicadellidae) transmit phytoplasmas to strawberry?. Agron. Colomb. [Internet]. 2020 Jan. 1 [cited 2024 Jul. 15];38(1):73-84. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/78583

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

695

Downloads

Download data is not yet available.