Published

2022-08-10

Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema

Curvas críticas de dilución de calcio, magnesio y azufre en cultivares de papa (Solanum tuberosum L. Grupo Andigenum) Diacol Capiro y Pastusa Suprema

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.98896

Keywords:

nutrient concentration, nutrient diagnostics, nutrient harvest index, secondary macronutrients (en)
concentración de nutrientes, diagnóstico nutricional, índice de cosecha de nutrientes, macronutrientes secundarios (es)

Downloads

Authors

Diagnostic tools must be developed to optimize the management of calcium (Ca), magnesium (Mg), and sulfur (S) in potato crops. This research aimed to develop the critical dilution curves for Ca, Mg, and S in potato (Solanum tuberosum L. Group Andigenum), establishing harvest indices and characterizing the nutrient relationships. Four field experiments were established in two growth cycles in the localities of Facatativá (high fertility soils) and Chocontá (low fertility soils) in Colombia. Two cultivars (Diacol Capiro and Pastusa Suprema) and two levels of fertilization (0 and 100% of macro and micronutrients) were evaluated. The dry biomass and Ca, Mg, and S concentration in tubers and aerial parts were measured from the formation of main stems until tuber maturation; this information was used to calculate the critical concentrations (Cac, Mgc, Sc), harvest indices, and nutrient correlations. The critical curves established were for Capiro: Cac = 1.7326W-0.2956, Mgc = 0.7191W-0.2803, Sc = 0.6461W-0.3904 and for Suprema: Cac = 1.523W-0.2559, Mgc = 0.6507W-0.236, Sc = 0.7669W-0.3932. Critical levels were established for five phenological stages. Capiro had a higher accumulation of Ca, Mg, and S in the tubers independently of locality, while Suprema had better performance in Chocontá. The accumulation of mineral nutrients in the tubers followed the order Ca<Mg<S. Capiro was a genotype with greater Ca-Mg-S uptake and better adaptation to locations. The Cac, Mgc and Sc curves provided a tool to carry out the nutritional diagnoses at critical stages of development and they are the first ones reported for potato of Group Andigenum.

Herramientas de diagnóstico deben ser desarrolladas para optimizar el manejo de calcio (Ca), magnesio (Mg) y azufre (S) en cultivos de papa. La investigación tuvo como objetivos desarrollar las curvas críticas de dilución para Ca, Mg y S en papa (Solanum tuberosum L. Grupo Andigenum), establecer sus índices de cosecha y caracterizar la relación entre nutrientes. Se establecieron cuatro experimentos en campo en dos ciclos, en las localidades de Facatativá (suelos de alta fertilidad) y Chocontá (suelos de baja fertilidad) en Colombia. Se evaluaron dos cultivares (Diacol Capiro y Pastusa Suprema) y dos niveles de fertilización (0 y 100% de macro y micronutrientes). Se midió la biomasa seca y concentración de Ca, Mg y S en tubérculos y parte aérea, desde la formación de tallos principales hasta maduración del tubérculo y se calcularon las concentraciones críticas (Cac, Mgc, Sc), índices de cosecha y correlaciones entre nutrientes. Las curvas criticas establecidas para Capiro fueron: Cac = 1.7326W-0.2956, Mgc = 0.7191W-0.2803, Sc = 0.6461W-0.3904 y para Suprema: Cac = 1.523W-0.2559, Mgc = 0.6507W-0.236, Sc = 0.7669W-0.3932. Se establecieron niveles críticos para cinco etapas fenológicas del cultivo. Capiro presentó mayor acumulación de Ca, Mg y S en el tubérculo independiente de la localidad, mientras Suprema tuvo mejor desempeño en Chocontá. La acumulación de nutrientes minerales en los tubérculos siguió el orden Ca<Mg<S. Capiro mostró ser un genotipo de mayor consumo de Ca-Mg-S y de mejor adaptación a localidades con condiciones edafoclimáticas contrastantes. Las curvas de Cac, Mgc y Sc proporcionan una herramienta para realizar el diagnóstico nutricional en etapas críticas del desarrollo y son las primeras reportadas en cultivos de papa del Grupo Andigenum.

References

Abdallah, F. B., Olivier, M., Goffart, J. P., & Minet, O. (2016). Establishing the nitrogen dilution curve for potato cultivar Bintje in Belgium. Potato Research, 59, 241–258. https://doi.org/10.1007/s11540-016-9331-y DOI: https://doi.org/10.1007/s11540-016-9331-y

Addiscott, T. M. (1974). Potassium and the distribution of calcium and magnesium in potato plants. Journal of the Science of Food and Agriculture, 25(9), 1173–1183. https://doi.org/10.1002/jsfa.2740250915 DOI: https://doi.org/10.1002/jsfa.2740250915

Assunção, N. S., Ribeiro, N. P., Silva, R. M., Soratto, R. P., & Fernandes, A. M. (2020). Tuber yield and allocation of nutrients and carbohydrates in potato plants as affected by limestone type and magnesium supply. Journal of Plant Nutrition, 43(1), 51–63. https://doi.org/10.1080/01904167.2019.1659345 DOI: https://doi.org/10.1080/01904167.2019.1659345

Aula, L., Dhillon, J. S., Omara, P., Wehmeyer, G. B., Freeman, K. W., & Raun, W. R. (2019). World sulfur use efficiency for cereal crops. Agronomy Journal, 111(5), 2485–2492. https://doi.org/10.2134/agronj2019.02.0095 DOI: https://doi.org/10.2134/agronj2019.02.0095

Barczak, B., & Nowak, K. (2015). Effect of sulphur fertilisation on the content of macroelements and their ionic ratios in potato tubers. Journal of Elementology, 20(1), 37–47. https://doi.org/10.5601/jelem.2014.19.1.471 DOI: https://doi.org/10.5601/jelem.2014.19.1.471

Barrientos, J. C., & Ñústez, C. E. (2014). Difusión de seis nuevas variedades de papa en Boyacá y Cundinamarca (Colombia) entre 2003 y 2010. Revista Colombiana de Ciencias Hortícolas, 8(1), 126–141. https://doi.org/10.17584/rcch.2014v8i1.2806 DOI: https://doi.org/10.17584/rcch.2014v8i1.2806

Barroso, F. L., Milagres, C. C., Fontes, P. C. R., & Cecon, P. R. (2021). Magnesium-influenced seed potato development and yield. Journal of Plant Nutrition, 44(2), 296–308. https://doi.org/10.1080/01904167.2020.1822404 DOI: https://doi.org/10.1080/01904167.2020.1822404

Campos, H., & Ortiz, O. (Eds.). (2020). The potato crop. Springer. https://doi.org/10.1007/978-3-030-28683-5 DOI: https://doi.org/10.1007/978-3-030-28683-5

Carciochi, W. D., Wyngaard, N., Reussi Calvo, N. I., Pagani, A., Divito, G. A., Echeverría, H. E., & Ciampitti, I. A. (2019). Critical sulfur dilution curve and sulfur nutrition index in maize. Agronomy Journal, 111(1), 448–456. https://doi.org/10.2134/agronj2018.07.0467 DOI: https://doi.org/10.2134/agronj2018.07.0467

Castro, H., & Gómez, M. (2013). Fertilidad y fertilizantes. In H. Burbano, & F. Silva. Ciencia del suelo - principios básicos (2nd ed., pp. 231–304). Sociedad Colombiana de la Ciencia del Suelo.

Chen, R., Zhu, Y., Cao, W., & Tang, L. (2021). A bibliometric analysis of research on plant critical dilution curve conducted between 1985 and 2019. European Journal of Agronomy, 123, Article 126199. https://doi.org/10.1016/j.eja.2020.126199 DOI: https://doi.org/10.1016/j.eja.2020.126199

Cogo, C. M., Andriolo, J. L., Bisognin, D. A., Godoi, R. S., Bortolotto, O. C., & Luz, G. L. (2006). Relação potássio-nitrogênio para o diagnóstico e manejo nutricional da cultura da batata. Pesquisa Agropecuaria Brasileira, 41(12), 1781–1786. https://doi.org/10.1590/S0100-204X2006001200013 DOI: https://doi.org/10.1590/S0100-204X2006001200013

Dhakad, H., Verma, S. K., Singh, S. P., Gaur, D., Arya, V., Sharma, K., Gupta, N., Tomar, A., Sharma, S. K., & Rajput, B. K. (2019). Effect of sulphur levels in combination of organic and inorganic sources of nutrient on plant growth and yield of potato (Solanum tuberosum L.). Journal of Pharmacognosy and Phytochemistry, 8(4), 1855–1861.

Divito, G. A., Echeverría, H. E., Andrade, F. H., & Sadras, V. O. (2016). N and S concentration and stoichiometry in soybean during vegetative growth: Dynamics of indices for diagnosing the S status. Field Crops Research, 198, 140–147. https://doi.org/10.1016/j.fcr.2016.08.018 DOI: https://doi.org/10.1016/j.fcr.2016.08.018

Duarte, L. O., Clemente, J. M., Caixeta, I. A. B., Senoski, M. P., & Aquino, L. A. (2019). Dry matter and nutrient accumulation curve in cabbage crop. Revista Caatinga, 32(3), 679–689. https://doi.org/10.1590/1983-21252019v32n312rc DOI: https://doi.org/10.1590/1983-21252019v32n312rc

Fedepapa. (2018, May). Boletín mensual regional No. 2. Fedepapa. https://fedepapa.com/wp-content/uploads/2021/09/BOYACA-2018.pdf

Ferreira, G., & Ernst, O. (2014). Diagnóstico del estado nutricional del cultivo de colza (Brassica napus) en base a curvas de dilución de nitrógeno y azufre. Agrociencia Uruguay, 18(1), 65–74.

Gaj, R., Górski, D., & Majchrzak, L. (2020). The effect of potassium and micronutrient foliar fertilisation on the content and accumulation of macroelements, yield and quality parameters of potato tubers. Agriculture, 10(11), Article 530. https://doi.org/10.3390/agriculture10110530 DOI: https://doi.org/10.3390/agriculture10110530

Giletto, C.M., & Echeverría, H. E. (2015). Critical nitrogen dilution curve in processing potato cultivars. American Journal of Potato Research, 6, 3144–3156. https://doi.org/10.4236/ajps.2015.619306 DOI: https://doi.org/10.4236/ajps.2015.619306

Gómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2018). Potential yield and efficiency of N and K uptake in tubers of cvs. Capiro and Suprema (Solanum tuberosum Group Andigenum). Agronomia Colombiana, 36(2), 126–134. https://doi.org/10.15446/agron.colomb.v36n2.72766 DOI: https://doi.org/10.15446/agron.colomb.v36n2.72766

Gómez, M. I., Magnitskiy, S., & Rodríguez, L. E., (2019a). Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutrient Cycling in Agroecosystems, 113, 349–363. https://doi.org/10.1007/s10705-019-09986-z DOI: https://doi.org/10.1007/s10705-019-09986-z

Gómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2019b). Critical dilution curves for nitrogen, phosphorus, and potassium in potato group Andigenum. Agronomy Journal, 111(1), 419–427. https://doi.org/10.2134/agronj2018.05.0357 DOI: https://doi.org/10.2134/agronj2018.05.0357

Greenwood, D. J., Lemaire, G., Gosse, G., Cruz, P., Draycott, A., & Neeteson, J. J. (1990). Decline in percentage N of C3 and C4 crops with increasing plant mass, Annals of Botany, 66(4), 425–436. https://doi.org/10.1093/oxfordjournals.aob.a088044 DOI: https://doi.org/10.1093/oxfordjournals.aob.a088044

Guerrero-Guio, J. C., Cabezas, M. G., & Galvis, J. H. Q. (2019). Efecto de dos sistemas de riego sobre la producción y uso eficiente del agua en el cultivo de papa variedad Diacol Capiro. Revista de Investigación Agraria y Ambiental, 11(1), 41–52. https://doi.org/10.22490/21456453.3080 DOI: https://doi.org/10.22490/21456453.3080

Hamdi, W., Helali, L., Beji, R., Zhani, K., Ouertatani, S., & Gharbi, A. (2015). Effect of levels calcium nitrate addition on potatoes fertilizer. International Research Journal of Engineering and Technology, 2(3), 2006–2013.

Handayani, T., Gilani, S. A., & Watanabe, K. N. (2019). Climatic changes and potatoes: How can we cope with the abiotic stresses? Breeding Science, 69(4), 545–563. https://doi.org/10.1270/jsbbs.19070 DOI: https://doi.org/10.1270/jsbbs.19070

Hauer-Jákli, M., & Tränkner, M. (2019). Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and metaanalysis from 70 years of research. Frontiers in Plant Science, 10, Article766. https://doi.org/10.3389/fpls.2019.00766 DOI: https://doi.org/10.3389/fpls.2019.00766

Helal, N., & AbdElhady, S. (2015). Calcium and potassium fertilization may enhance potato tuber yield and quality. Middle East Journal of Agriculture Research, 4(4), 991–998.

IGAC. (2006). Métodos analíticos del Laboratorio de Suelos (6th ed.). Instituto Geográfico Agustín Codazzi.

Jahanzad, E., Barker, A. V., Hashemi, M., Sadeghpour, A., Eaton, T., & Park, Y. (2017). Improving yield and mineral nutrient concentration of potato tubers through cover cropping. Field Crops Research, 212, 45–51. https://doi.org/10.1016/j.fcr.2017.06.023 DOI: https://doi.org/10.1016/j.fcr.2017.06.023

Klikocka, H., & Głowacka, A. (2013). Does the sulphur fertilization modify magnesium and calcium content in potato tubers (Solanum tuberosum L.)? Acta Scientiarum Polonorum, Hortorum Cultus, 12(5), 41–53.

Koch, M., Busse, M., Naumann, M., Jákli, B., Smit, I., Cakmak, I., Hermans, C., & Pawelzik, E. (2019). Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiologia Plantarum, 166(4), 921–935. https://doi.org/10.1111/ppl.12846 DOI: https://doi.org/10.1111/ppl.12846

Koch, M., Naumann, M., & Pawelzik, E. (2019). Cracking and fracture properties of potato (Solanum tuberosum L.) tubers and their relation to dry matter, starch, and mineral distribution. Journal of the Science of Food and Agriculture, 99(6), 3149–3156. https://doi.org/10.1002/jsfa.9530 DOI: https://doi.org/10.1002/jsfa.9530

Koch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2020). The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Research, 63, 97–119. https://doi.org/10.1007/s11540-019-09431-2 DOI: https://doi.org/10.1007/s11540-019-09431-2

Kopriva, S., & Rennenberg, H. (2004). Control of sulphate assimilation and glutathione synthesis: Interaction with N and C metabolism. Journal of Experimental Botany, 55(404), 1831–1842. https://doi.org/10.1093/jxb/erh203 DOI: https://doi.org/10.1093/jxb/erh203

Kratzke, M. G., & Palta, J. P. (1985). Evidence for the existence of functional roots on potato tubers and stolons: significance in water transport to the tuber. American Potato Journal, 62, 227–236. https://doi.org/10.1007/BF02852802 DOI: https://doi.org/10.1007/BF02852802

Lemaire, G., Sinclair, T., Sadras, V., & Bélanger, G. (2019). Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agronomy for Sustainable Development, 39, Article 27. https://doi.org/10.1007/s13593-019-0570-6 DOI: https://doi.org/10.1007/s13593-019-0570-6

Maathuis, F.J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/j.pbi.2009.04.003 DOI: https://doi.org/10.1016/j.pbi.2009.04.003

Marouani, A., Behi, O., Sahli, A., & Jeddi, F. B. (Eds.). (2014). Critical nitrogen curve for two potato cultivars under semi- arid conditions: Vol 5. Fifth International Scientific Agricultural Symposium “Agrosym 2014“. Faculty of Agriculture, University of East Sarajevo. http://www2.agrosym.rs.ba/agrosym/agrosym_2014/documents/1pp/pp46.pdf

Minagricultura. (2019). Estrategia de ordenamiento de la producción cadena productiva de la papa y su industria. Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Documentos/2.%20ESTRATEGIA%20ORDENAMIENTO%20DE%20LA%20PRODUCCI%C3%93N.pdf

Moussa, S. A. M., Hafez, L. M., & El-Fadl, N. I. A. (2018). Effect of different levels of sulphur and nitrogen fertilizers on potato productivity, acrylamide formation and amino acids content in processed potatoes. Middle East Journal of Agriculture Research, 7(4), 1626–1646.

Muthanna, M. A., K. Singh, A. K., Tiwari, A., Jain, V. K., & Padhi, M. (2017). Effect of boron and sulphur application on plant growth and yield attributes of potato (Solanum tuberosum L.). International Journal of Current Microbiology and Applied Sciences, 6(10), 399–404. https://doi.org/10.20546/ijcmas.2017.610.049 DOI: https://doi.org/10.20546/ijcmas.2017.610.049

Naumann, M., Koch, M., Thiel, H., Gransee, A. & Pawelzik, E. (2020). The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Reseach, 63, 121–137. https://doi.org/10.1007/s11540-019-09430-3 DOI: https://doi.org/10.1007/s11540-019-09430-3

Palta, J. P. (1996). Role of calcium in plant responses to stresses: linking basic research to the solution of practical problems. Proceedings of the Colloquium Recent Advances in Plant Response to Mechanical Stress: Theory and Application, HortScience, 31(1), 51–57. DOI: https://doi.org/10.21273/HORTSCI.31.1.51

Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., & Wolf, J. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008 DOI: https://doi.org/10.1016/j.eja.2017.11.008

Reussi, N., Echeverría, H. E., & Sainz, H. R. (2012). Stability of foliar nitrogen: Sulfur ratio in spring red wheat and sulfur dilution curve. Journal of Plant Nutrition, 35(7), 990–1003. https://doi.org/10.1080/01904167.2012.671403 DOI: https://doi.org/10.1080/01904167.2012.671403

Rhodes, R., Miles, N., & Hughes, J. C. (2018). Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research, 223, 1–11. https://doi.org/10.1016/j.fcr.2018.01.001 DOI: https://doi.org/10.1016/j.fcr.2018.01.001

Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O., & Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis, 48(16), 1895–1920. https://doi.org/10.1080/00103624.2017.1407429 DOI: https://doi.org/10.1080/00103624.2017.1407429

Roveda, G. H., Bolaños, A. M. A., Zapata, J. L., Medina, C. I. C., Almanza, P. J. M., Porras, P. D. R., & Valbuena, R. I. B. (2010). Escalas fenológicas de las variedades de papa parda pastusa, diacol capiro y criolla “yema de huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y Antioquia. Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA. https://repository.agrosavia.co/handle/20.500.12324/12893

Sánchez−Reinoso, A. D., Nieto, M. F., Dossmann, J., Camacho-Tamayo, J. H., & Restrepo-Díaz, H. (2019). Nutrient uptake, partitioning, and removal in two modern high-yielding Colombian rice genotypes. Journal of Plant Nutrition, 42(18), 2373–2387. https://doi.org/10.1080/01904167.2019.1659334 DOI: https://doi.org/10.1080/01904167.2019.1659334

Santana, A. C. A., Oliveira, E. C. A., Silva, V. S. G., Santos, R. L., Silva, M. A., & Freire, F. J. (2020). Critical nitrogen dilution curves and productivity assessments for plant cane. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(4), 244–251. https://doi.org/10.1590/1807-1929/agriambi.v24n4p244-251 DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n4p244-251

SAS Institute. (2017). Base SAS 9.4 procedures guide: statistical procedures (5th ed.). SAS institute.

Schabow, J. E., & Palta, J. P. (2019). Intumescence injury in the leaves of russet burbank potato plants is mitigated by calcium nutrition. American Journal of Potato Research, 96, 6–12. https://doi.org/10.1007/s12230-018-9682-9 DOI: https://doi.org/10.1007/s12230-018-9682-9

Seifu, Y. W., & Deneke, S. (2017). Effect of calcium chloride and calcium nitrate on potato (Solanum tuberosum L.) growth and yield. Journal of Horticulture, 4(3), Article 1000207. https://doi.org/10.4172/2376-0354.1000207 DOI: https://doi.org/10.4172/2376-0354.1000207

Shen, X., Yuan, Y., Zhang, H., Guo, Y., Zhao, Y., Li, S., & Kong, F. (2019). The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes, 10(8), Article 607. https://doi.org/10.3390/genes10080607 DOI: https://doi.org/10.3390/genes10080607

Silva, C. D., Soares, M. E. P., Ferreira, M. H., Cavalcante, A. C. P., Andrade, G. A. V., & Aquino, L. A. (2020). Dry matter and macronutrient extraction curves of potato varieties in the Alto Paranaíba region, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(3), 176–186. https://doi.org/10.1590/1807-1929/agriambi.v24n3p176-186 DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n3p176-186

Singh, S. K., Sharma, M., Reddy, K. R., & Venkatesh, T. (2018). Integrated application of boron and sulphur to improve quality and economic yield in potato. Journal of Environmental Biology, 39, 228–236. https://doi.org/10.22438/jeb/39/2/MRN-395 DOI: https://doi.org/10.22438/jeb/39/2/MRN-395

Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed). USDA-Natural Resources Conservation Service.

Subramanian, N. K., White, P. J., Broadley, M. R., & Ramsay, G. (2011). The three-dimensional distribution of minerals in potato tubers. Annals of Botany, 107(4), 681–691. https://doi.org/10.1093/aob/mcr009 DOI: https://doi.org/10.1093/aob/mcr009

Szczepaniak, W. (2016). Evaluating nitrogen use efficiency (NUE) indices on the background of mineral status of the seed crop at maturity: a case study of maize. Polish Journal of Environmental Studies, 25(5), 2129–2138. https://doi.org/10.15244/pjoes/61817 DOI: https://doi.org/10.15244/pjoes/61817

Walworth, J. L., & Muniz, J. E. (1993). A compendium of tissue nutrient concentrations for field-grown potatoes. American Potato Journal, 70, 579–597. https://doi.org/10.1007/BF02850848 DOI: https://doi.org/10.1007/BF02850848

Wang, M., Wang, H., Hou, L., Zhu, Y., Zhang, Q., Chen, L., & Mao, P. (2018). Development of a critical nitrogen dilution curve of Siberian wildrye for seed production. Field Crops Research, 219, 250–255. https://doi.org/10.1016/j.fcr.2018.01.030 DOI: https://doi.org/10.1016/j.fcr.2018.01.030

Wang, X., Ye, T., Ata-Ul-Karim, S. T., Zhu, Y., Liu, L., Cao, W., & Tang, L. (2017). Development of a critical nitrogen dilution curve based on leaf area duration in wheat. Frontiers in Plant Science, 8, Article 1517. https://doi.org/10.3389/fpls.2017.01517 DOI: https://doi.org/10.3389/fpls.2017.01517

Wang, Z., Hassan, M. U., Nadeem, F., Wu, L., Zhang, F., & Li, X. (2020). Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Frontiers in Plant Science, 10, Article 1727. https://doi.org/10.3389/fpls.2019.01727 DOI: https://doi.org/10.3389/fpls.2019.01727

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. DOI: https://doi.org/10.1007/978-3-319-24277-4

Zamuner, E. C., Lloveras, J., & Echeverría, H. E. (2016). Use of a critical phosphorus dilution curve to improve potato crop nutritional management. American Journal of Potato Research, 93, 392–403. https://doi.org/10.1007/s12230-016-9514-8 DOI: https://doi.org/10.1007/s12230-016-9514-8

How to Cite

APA

Castellanos Ruiz, K., Gómez Sánchez, M. I. and Rodríguez Molano, L. E. . (2022). Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agronomía Colombiana, 40(2), 198–211. https://doi.org/10.15446/agron.colomb.v40n2.98896

ACM

[1]
Castellanos Ruiz, K., Gómez Sánchez, M.I. and Rodríguez Molano, L.E. 2022. Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agronomía Colombiana. 40, 2 (May 2022), 198–211. DOI:https://doi.org/10.15446/agron.colomb.v40n2.98896.

ACS

(1)
Castellanos Ruiz, K.; Gómez Sánchez, M. I.; Rodríguez Molano, L. E. . Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agron. Colomb. 2022, 40, 198-211.

ABNT

CASTELLANOS RUIZ, K.; GÓMEZ SÁNCHEZ, M. I.; RODRÍGUEZ MOLANO, L. E. . Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 198–211, 2022. DOI: 10.15446/agron.colomb.v40n2.98896. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/98896. Acesso em: 16 jul. 2024.

Chicago

Castellanos Ruiz, Kristal, Manuel Iván Gómez Sánchez, and Luis Ernesto Rodríguez Molano. 2022. “Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema”. Agronomía Colombiana 40 (2):198-211. https://doi.org/10.15446/agron.colomb.v40n2.98896.

Harvard

Castellanos Ruiz, K., Gómez Sánchez, M. I. and Rodríguez Molano, L. E. . (2022) “Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema”, Agronomía Colombiana, 40(2), pp. 198–211. doi: 10.15446/agron.colomb.v40n2.98896.

IEEE

[1]
K. Castellanos Ruiz, M. I. Gómez Sánchez, and L. E. . Rodríguez Molano, “Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema”, Agron. Colomb., vol. 40, no. 2, pp. 198–211, May 2022.

MLA

Castellanos Ruiz, K., M. I. Gómez Sánchez, and L. E. . Rodríguez Molano. “Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 198-11, doi:10.15446/agron.colomb.v40n2.98896.

Turabian

Castellanos Ruiz, Kristal, Manuel Iván Gómez Sánchez, and Luis Ernesto Rodríguez Molano. “Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 198–211. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/98896.

Vancouver

1.
Castellanos Ruiz K, Gómez Sánchez MI, Rodríguez Molano LE. Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agron. Colomb. [Internet]. 2022 May 1 [cited 2024 Jul. 16];40(2):198-211. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/98896

Download Citation

CrossRef Cited-by

CrossRef citations1

1. David Fernando Torres-Hernández, Elberth Hernando Pinzón-Sandoval, Helber Enrique Balaguera-López, Amanda Silva-Parra, Jesús Hernando Galvis-Quintero. (2023). Responses of growth and yield of 'Diacol Capiro' potatoes to application of silicate fertilizer amendments . Revista Colombiana de Ciencias Hortícolas, 17(3) https://doi.org/10.17584/rcch.2023v17i3.16450.

Dimensions

PlumX

Article abstract page views

359

Downloads

Download data is not yet available.