Effect of calcium on fruit quality: A review
Efecto del calcio en la calidad de los frutos: una revisión
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.112026Palabras clave:
fertilization, preharvest, postharvest, ripening, fruit development, physiopathy (en)fertilización, precosecha, poscosecha, maduración, desarrollo de fruto, fisiopatía (es)
Descargas
Calcium (Ca) plays a crucial role as a nutrient influencing the ripening, post-harvest duration, and quality of fruits. Its impact on the cell wall and its function as a secondary messenger at the cellular level underscore its significance. While recently there has been an increase in studies examining the effects of Ca on fruit quality, there remains a need to consolidate and expand the literature on pre-harvest and post-harvest applications of Ca concerning the physical-chemical properties of fruits. This review aims to compile information on the mechanisms of Ca absorption by plants, as well as the interaction of Ca with the cell wall in fruit development and growth; the review also aims to synthesize literature on the effects of calcium on the physical and chemical properties of fruits that ultimately influence their quality. The review considers a comprehensive analysis of studies published in reputable scientific publishers (Elsevier, Springer, Frontiers, Wiley, MDPI, Hindawi, SciELO) over the last ten years, encompassing various relevant topics. Calcium proves effective in retarding the loss of firmness in fruits, increasing their mass, mitigating mass loss during storage, and extending postharvest life, thereby enhancing marketability. Furthermore, Ca demonstrates a role in decreasing the activity of enzymes responsible for cell wall degradation. Additionally, it reduces ethylene production in fruits, delaying the climacteric peak and reducing its intensity. Its application results in delayed color changes in fruits. For soluble solids, Ca diminishes sugar values and postpones their peak during the post-harvest period while maintaining high total acidity values. Notably, Ca applications contribute to a decreased incidence of certain physiological disorders.
El calcio (Ca) es un nutriente muy importante en la maduración, la duración poscosecha y la calidad de los frutos, debido a su acción en la pared celular y su papel como mensajero secundario a nivel celular. En los últimos años se han incrementado los estudios sobre el efecto del Ca en la calidad de los frutos; no obstante, la literatura sobre sobre las aplicaciones precosecha y poscosecha del Ca en las propiedades físico-químicas de los frutos debe ser consolidada y ampliada. Por lo anterior, esta revisión tiene como finalidad consolidar información sobre cómo es el mecanismo de absorción del Ca por la planta y su interacción con la pared celular en el desarrollo y crecimiento del fruto, así como recopilar literatura sobre el efecto del calcio en las propiedades físicas y químicas de los frutos y su calidad. La revisión considera un análisis exhaustivo de estudios publicados en prestigiosas editoriales científicas (Elsevier, Springer, Frontiers, Wiley, MDPI, Hindawi, SciELO) en los últimos diez años, abarcando diversos temas relevantes. El calcio resulta eficaz para retardar la pérdida de firmeza de los frutos, aumentar su masa, mitigar la pérdida de masa durante el almacenamiento y prolongar la vida poscosecha, mejorando así su comercialización. Además, el Ca desempeña un papel en la disminución de la actividad de las enzimas responsables de la degradación de la pared celular. Así mismo, reduce la producción de etileno en los frutos, retrasando el pico climatérico y reduciendo su intensidad. Su aplicación también produce un retraso en los cambios de color en los frutos. En cuanto a los sólidos solubles, el Ca disminuye los valores de azúcar y retrasa su pico durante el periodo post-cosecha, manteniendo altos valores de acidez total. En particular, las aplicaciones de Ca contribuyen a disminuir la incidencia de ciertos desórdenes fisiológicos.
Referencias
Ali, I., Abbasi, N. A., & Hafiz, I. (2021). Application of calcium chloride at different phenological stages alleviates chilling injury and delays climacteric ripening in peach fruit during low-temperature storage. International Journal of Fruit Science, 21(1), 1040–1058. https://doi.org/10.1080/15538362.2021.1975607
Álvarez-Herrera, J., Balaguera-López, H., & Fischer, G. (2012). Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Horticulturae, 928, 163–170. https://doi.org/10.17660/ActaHortic.2012.928.19
Álvarez-Herrera, J. G., Vélez, J. E., & Jaime-Guerrero, M. (2022). Characterization of cape gooseberry (Physalis peruviana L.) fruits from plants irrigated with different regimens and calcium doses. Revista Colombiana de Ciencias Hortícolas, 16(1), Article e13269. https://doi.org/10.17584/rcch.2022v16i1.13269
Amini, F., Bayat, L., & Hosseinkhani, S. (2016). Influence of preharvest nano calcium applications on postharvest of sweet pepper (Capsicum annum). Nusantara Bioscience, 8(2), 215–220. https://doi.org/10.13057/nusbiosci/n080213
Analdex. (2023). Informe de las exportaciones colombianas de frutas 2022. Asociación Colombiana de Comercio Exterior. https://www.analdex.org/2023/04/20/informe-de-las-exportaciones-colombianas-de-frutas-2022/
Aune, D., Giovannucci, E., Boffetta, P., Fadnes, L. T., Keum, N., Norat, T., Greenwood, D. C., Riboli, E., Vatten, L. J., & Tonstad, S. (2017). Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality –a systematic review and dose-response meta-analysis of prospective studies. International Journal of Epidemiology, 46(3), 1029–1056. https://doi.org/10.1093%2Fije%2Fdyw319
Barker, A. V., & Stratton, M. L. (2020). Nutrient density of fruit crops as a function of soil fertility. In A. K. Srivastava, & C. Hu (Eds.), Fruit crops (pp. 13–31). Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00002-2
Bitange, N. M., Chemining’wa, G. N., Ambuko, J. L., & Owino, W. O. (2022). Effects of mode and timing of calcium chloride application on tissue calcium concentration and acceptability of mango fruits. African Journal of Food, Agriculture, Nutrition and Development, 22(8), 18552–18573. https://doi.org/10.18697/ajfand.103.20350
Bonomelli, C., Fernández, V., Capurro, F., Palma, C., Videla, X., Rojas-Silva, X., Nario, A., & Mártiz, J. (2022). Absorption and distribution of calcium (45Ca) applied to the surface of orange (Citrus sinensis) fruits at different developmental stages. Agronomy, 12(1), Article 150. https://doi.org/10.3390/agronomy12010150
Casero, T., Torres, E., Alegre, S., & Recasens, I. (2017). Macronutrient accumulation dynamics in apple fruits. Journal of Plant Nutrition, 40(17), 2468–2476. https://doi.org/10.1080/01904167.2017.1380819
Choi, J. H., Lee, B., Gu, M., Lee, U. Y., Kim, M. S., Jung, S. K., & Choi, H. S. (2020). Course of fruit cracking in ‘Whansan’ pears. Horticulture, Environment, and Biotechnology, 61, 51–59. https://doi.org/10.1007/s13580-019-00200-1
Cooman, A., Torres, C., & Fischer, G. (2005). Determinación de las causas del rajado del fruto de uchuva (Physalis peruviana L.) bajo cubierta: II. Efecto de la oferta de calcio, boro & cobre. Agronomía Colombiana, 23(1), 74–82. https://revistas.unal.edu.co/index.php/agrocol/article/view/19919
Coulibaly, A. S., Kouakou, K. L., Dao, J. P., Kouakou, C., Dedi, J. K. & Zoro Bi, I. A. (2023). Enhancing tomato (Solanum lycopersicum L.) fruits yield and quality and blossom end rot control using different biological calcium sources. Journal of Agricultural Chemistry and Environment, 12(3), 263–274. https://doi.org/10.4236/jacen.2023.123020
Cui, Z., Wang, N., Li, D., Wang, R., & Ma, C. (2021). Nitrendipine-treatment increases cork spot disorder incidence in pear ‘Akituki’ (Pyrus pyrifolia Nakai.) by altering calcium distribution inside the fruit. Plants, 10(5), Article 994. https://doi.org/10.3390/plants10050994
Davis, D. R. (2009). Declining fruit and vegetable nutrient composition: what is the evidence? HortScience, 44(1), 15–19. https://doi.org/10.21273/HORTSCI.44.1.15
Dorostkar, M., Moradinezhad, F., & Ansarifar, E. (2022). Effectiveness of postharvest calcium salts applications to improve shelf-life and maintain apricot fruit quality during storage. Revista Facultad Nacional de Agronomía Medellín, 75(2), 9983–9988. https://doi.org/10.15446/rfnam.v75n2.98060
Doyle, J. W., Nambeesan, S. U., & Malladi, A. (2021). Physiology of nitrogen and calcium nutrition in blueberry (Vaccinium sp.). Agronomy, 11(4), Article 765. https://doi.org/10.3390/agronomy11040765
Fallahi, E., & Mahdavi, S. (2020). Effects of calcium with and without surfactants on fruit quality, mineral nutrient, respiration and ethylene evolution of ‘Red Spur Delicious’ apple. World Journal of Agriculture and Soil Science, 4(5), Article 598. http://doi.org/10.33552/WJASS.2020.04.000598
Fan, J., Du, W., Yang, X., Zhang, J., Chen, Q., & Hu, H. (2023). Changes in calcium content and expression of calcium sensor-related genes during sand pear (Pyrus prifolia) fruit cracking. Scientia Horticulturae, 313, Article 111911. https://doi.org/10.1016/j.scienta.2023.111911
Fischer, G., Balaguera-López, H. E., & Álvarez-Herrera, J. (2021). Causes of fruit cracking in the era of climate change. A review. Agronomía Colombiana, 39(2), 196–207. https://doi.org/10.15446/agron.colomb.v39n2.97071
Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703
Freitas, S. T., & Mitcham, E. I. (2012). Factors involved in fruit calcium deficiency disorders. Horticultural Reviews, 40(1), 107–146. https://doi.org/10.1002/9781118351871.ch3
Frempong, K. E. B., Chen, Y., Liang, L., & Lin, X. (2022). Effect of calcium chloride and 1-methylcyclopropene combined treatment on pectin degradation and textural changes of Eureka lemon during postharvest storage. Current Research in Food Science, 5, 1412–1421. https://doi.org/10.1016/j.crfs.2022.08.023
Gao, Q., Xiong, T., Li, X., Chen, W., & Zhu, X. (2019). Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae, 253, 412–421. https://doi.org/10.1016/j.scienta.2019.04.069
Gawkowska, D., Cybulska, J., & Zdunek, A. (2018). Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers, 10(7), Article 762. https://doi.org/10.3390/polym10070762
Griffith, C., & Einhorn, T. C. (2023). The effect of plant growth regulators on xylem differentiation, water and nutrient transport, and bitter pit susceptibility of apple. Scientia Horticulturae, 310, Article 111709. https://doi.org/10.1016/j.scienta.2022.111709
Gulbagca, F., Burhan, H., Elmusa, F., & Sen, F. (2020). Calcium nutrition in fruit crops: Agronomic and physiological implications. In A. K. Srivastava, & C. Hu (Eds.), Fruit crops (pp. 173–190). Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00014-9
Guyenet, S. J. (2019). Impact of whole, fresh fruit consumption on energy intake and adiposity: a systematic review. Frontiers in Nutrition, 6, Article 66. https://doi.org/10.3389/fnut.2019.00066
Hirzel, J. (2023). Can the firmness, weight, and size of blueberry fruit be enhanced through the application of low amounts of calcium to the soil?. Plants, 13(1), Article 1. https://doi.org/10.3390/plants13010001
Hocking, B., Tyerman, S. D., Burton, R. A., & Gilliham, M. (2016). Fruit calcium: transport and physiology. Frontiers in Plant Science, 7, Article 569. https://doi.org/10.3389/fpls.2016.00569
Huai, B., Wu, Y., Liang, C., Tu, P., Mei, T., Guan, A., Yao, Q., Li, J., & Chen, J. (2022). Effects of calcium on cell wall metabolism enzymes and expression of related genes associated with peel creasing in Citrus fruits. PeerJ, 10, Article e14574. https://doi.org/10.7717/peerj.14574
Huang, W., Shi, Y., Yan, H., Wang, H., Wu, D., Grierson, D., & Chen, K. (2023). The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage. Journal of Advanced Research, 49, 47–62. https://doi.org/10.1016/j.jare.2022.09.009
Hussein, S. A., & Al-Doori, M. F. (2021). The effect of spraying with calcium, boron and benzyl adenine on the quantity and quality of yield for strawberry plants (Fragaria ananassa Duch) cv. Rubygem. IOP Conference Series: Earth and Environmental Science, 910(1), Article 012066. https://doi.org/10.1088/1755-1315/910/1/012066
Jain, V., Chawla, S., Choudhary, P., & Jain, S. (2019). Post-harvest calcium chloride treatments influence fruit firmness, cell wall components and cell wall hydrolyzing enzymes of Ber (Ziziphus mauritiana Lamk.) fruits during storage. Journal of Food Science and Technology, 56, 4535–4542. https://doi.org/10.1007/s13197-019-03934-z
Karlsons, A., Osvalde, A., Cekstere, G., & Āboliņa, L. (2023). Effects of Ca sprays on fruit ca content and yield of tomato variety susceptible to blossom-end rot. Plants, 12(8), Article1640. https://doi.org/10.3390/plants12081640
Khakpour, S., Hajizadeh, H. S., Hemati, A., Bayanati, M., Nobaharan, K., Chelan, E. M., Lajayer, B. A., & Dell, B. (2022). The effect of pre-harvest treatment of calcium nitrate and iron chelate on post-harvest quality of apple (Malus domestica Borkh cv. Red Delicious). Scientia Horticulturae, 304, Article 111351. https://doi.org/10.1016/j.scienta.2022.111351
Khalaj, K., Ahmadi, N., & Souri, M. K. (2017). Improvement of postharvest quality of Asian pear fruits by foliar application of boron and calcium. Horticulturae, 3(1), Article 15. https://doi.org/10.3390/horticulturae3010015
Khan, N., Fatima, F., Haider, M. S., Shazadee, H., Liu, Z., Zheng, T., & Fang, J. (2019). Genome-wide identification and expression profiling of the polygalacturonase (PG) and pectin methylesterase (PME) genes in grapevine (Vitis vinifera L.). International Journal of Molecular Sciences, 20(13), Article 3180. https://doi.org/10.3390/ijms20133180
Khlopkov, A., Sherstneva, O., Ladeynova, M., Grinberg, M., Yudina, L., Sukhov, V., & Vodeneev, V. (2021). Participation of calcium ions in induction of respiratory response caused by variation potential in pea seedlings. Plant Signaling & Behavior, 16(4), Article 1869415. https://doi.org/10.1080/15592324.2020.1869415
Kumar, R., & Kumar, V. (2016). Physiological disorders in perennial woody tropical and subtropical fruit crops: A review. The Indian Journal of Agricultural Sciences, 86(6), 703–717. https://doi.org/10.56093/ijas.v86i6.58831
Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., & Rascón-Chu, A. (2018). Pectin and pectinbased composite materials: Beyond food texture. Molecules, 23(4), Article 942. https://doi.org/10.3390/molecules23040942
Lemtiri-Chlieh, F., Arold, S. T., & Gehring, C. (2020). Mg2+ is a missing link in plant cell Ca2+ signalling and homeostasis – A study on Vicia faba guard cells. International Journal of Molecular Sciences, 21(11), Article 3771. https://doi.org/10.3390/ijms21113771
Liu, J., Li, C., Jin, Y., Zhang, S., Wang, M., & Ge, Y. (2023). Repression of cell wall metabolism by calcium lactate enhances the postharvest quality maintenance of Jinfeng pear fruit. Scientia Horticulturae, 322, Article 112460. https://doi.org/10.1016/j.scienta.2023.112460
Lobos, T. E., Retamales, J. B., & Hanson, E. J. (2021). Early preharvest calcium sprays improve postharvest fruit quality in ‘Liberty’ high bush blueberries. Scientia Horticulturae, 277, Article 109790. https://doi.org/10.1016/j.scienta.2020.109790
Lobos, T. E., Retamales, J. B., Luengo Escobar, A., & Hanson, E. J. (2021). Timing of foliar calcium sprays improves fruit firmness and antioxidants in “Liberty” blueberries. Journal of Soil Science and Plant Nutrition, 21, 426–436. https://doi.org/10.1007/s42729-020-00371-2
López-Zaplana, A., Bárzana, G., Agudelo, A., & Carvajal, M. (2020). Foliar mineral treatments for the reduction of melon (Cucumis melo L.) fruit cracking. Agronomy, 10(11), Article 1815. https://doi.org/10.3390/agronomy10111815
Ma, X., Liu, B., Zhang, Y., Su, M., Zheng, B., Wang, S., & Wu, H. (2023). Unraveling correlations between calcium deficiency and spongy tissue in mango fruit flesh. Scientia Horticulturae, 309, Article 111694. https://doi.org/10.1016/j.scienta.2022.111694
Maletsika, P., Liava, V., Sarrou, E., Titeli, V. S., Nasiopoulou, E., Martens, S., Karagiannis, E., Grigoriadou, K., Molassiotis, A., & Nanos, G. D. (2023). Foliar calcium effects on quality and primary and secondary metabolites of white-fleshed ‘Lemonato’ peaches. Horticulturae, 9(3), Article 299. https://doi.org/10.3390/horticulturae9030299
Matteo, M., Zoffoli, J. P., & Ayala, M. (2022). Calcium sprays and crop load reduction increase fruit quality and postharvest storage in sweet cherry (Prunus avium L.). Agronomy, 12(4), Article 829. https://doi.org/10.3390/agronomy12040829
Melo, R. O., Prieto Martínez, H. E., Rocha, B. C. P., & García Junior, E. (2022). Production and quality of Sweet Grape tomato in response to foliar calcium fertilization. Revista Ceres, 69(1), 48–54. https://doi.org/10.1590/0034-737X202269010007
Michailidis, M., Karagiannis, E., Tanou, G., Samiotaki, M., Tsiolas, G., Sarrou, E., Stamatakis, G., Ganopoulos, I., Martens, S., Argiriou, A., & Molassiotis, A. (2020). Novel insights into the calcium action in cherry fruit development revealed by high-throughput mapping. Plant Molecular Biology, 104, 597–614. https://doi.org/10.1007/s11103-020-01063-2
Michailidis, M., Karagiannis, E., Tanou, G., Sarrou, E., Stavridou, E., Ganopoulos, I., Karamanoli, K., Madesis, P., Martens, S., & Molassiotis, A. (2019). An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. Planta, 250, 2009–2022. https://doi.org/10.1007/s00425-019-03272-6
Moradinezhad, F., & Dorostkar, M. (2021). Pre-harvest foliar application of calcium chloride and potassium nitrate influences growth and quality of apricot (Prunus armeniaca L.) fruit cv. ‘Shahroudi’. Journal of Soil Science and Plant Nutrition, 21, 1642–1652. https://doi.org/10.1007/s42729-021-00468-2
Muengkaew, R., Whangchai, K., & Chaiprasart, P. (2018). Application of calcium–boron improve fruit quality, cell characteristics, and effective softening enzyme activity after harvest in mango fruit (Mangifera indica L.). Horticulture, Environment, and Biotechnology, 59, 537–546. https://doi.org/10.1007/s13580-018-0059-2
Nassarawa, S. S., Bao, N., Zhang, X., Ru, Q., & Luo, Z. (2024). Evaluation of light irradiation on anthocyanins and energy metabolism of grape (Vitis vinifera L.) during storage. Food Chemistry, 431, Article 137141. https://doi.org/10.1016/j.foodchem.2023.137141
Nie, H., Shi, Y., Geng, X., & Xing, G. (2022). CRISRP/Cas9-mediated targeted mutagenesis of tomato polygalacturonase gene (SlPG) delays fruit softening. Frontiers in Plant Science, 13, Article 729128. https://doi.org/10.3389/fpls.2022.729128
Park, Y., Kim, M., Yun, S. K., Kim, S. S., & Joa, J. (2022). A simple model for predicting sunburn on Satsuma mandarin fruit. Scientia Horticulturae, 292, Article 110658. https://doi.org/10.1016/j.scienta.2021.110658
Polko, J. K., & Kieber, J. J. (2019). The regulation of cellulose biosynthesis in plants. The Plant Cell, 31(2), 282–296. https://doi.org/10.1105/tpc.18.00760
Prado, R. M (2021). Calcium. In R. M. Prado (Ed.), Mineral nutrition of tropical plants (pp. 149–164). Springer. https://doi.org/10.1007/978-3-030-71262-4_8
Procolombia. (2021). Cadena de Agroalimentos 2021. https://www.camara.gov.co/sites/default/files/2021-08/ANEXO%201%20MINCOMERCIO%20-%20%20Productos_potencial_exportador_agroindustrial_Colombia.pdf
Ranjbar, S., Ramezanian, A., & Rahemi, M. (2020). Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Horticulture, Environment, and Biotechnology, 61, 23–30. https://doi.org/10.1007/s13580-019-00168-y
Reitz, N. F., Shackel, K. A., & Mitcham, E. J. (2021). Differential effects of excess calcium applied to whole plants vs. excised fruit tissue on blossom-end rot in tomato. Scientia Horticulturae, 290, Article 110514. https://doi.org/10.1016/j.scienta.2021.110514
Reyes-Medina, A. J., Pinzón, E. H., & Álvarez-Herrera, J. G. (2017). Effect of calcium chloride and refrigeration on the quality and organoleptic characteristics of cape gooseberry (Physalis peruviana L.). Acta Agronómica, 66(1), 15–20. https://doi.org/10.15446/acag.v66n1.50610
Ribeiro, L. R., Leonel, S., Souza, J. M. A., Garcia, E. L., Leonel, M., Monteiro, L. N. H., Silva, M. S., & Ferreira, R. B. (2020). Improving the nutritional value and extending shelf life of red guava by adding calcium chloride. Food Sciences and Technology-LWT, 130, Article 109655. https://doi.org/10.1016/j.lwt.2020.109655
Saltveit, M. E. (2019). Respiratory metabolism. In E. M. Yahia, & A. Carrillo-López (Eds.), Postharvest physiology and biochemistry of fruits and vegetables (pp. 73–91, 1st Ed.). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813278-4.00004-X
Santos, M., Egea-Cortines, M., Gonçalves, B., & Matos, M. (2023). Molecular mechanisms involved in fruit cracking: A review. Frontiers in Plant Science, 14, Article 1130857. http://doi.org/10.3389/fpls.2023.1130857
Saure, M. C. (2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Scientia Horticulturae, 105(1), 65–89. https://doi.org/10.1016/j.scienta.2004.10.003
Sena, J. P. D., Silva, L. D. S., Oliveira, F. F. D., Silva Júnior, G. B. D., & Cavalcante, Í. H. L. (2024). Calcium fertilization strategy on mango physiological characteristics and yield. Pesquisa Agropecuária Tropical, 54, Article e76919. https://doi.org/10.1590/1983-40632024v5476919
Seo, H. J., Sawant, S. S., & Song, J. (2022). Fruit cracking in pears: Its cause and management – A review. Agronomy, 12(10), Article 2437. https://doi.org/10.3390/agronomy12102437
Shi, H., Zhou, W., Xu, Y., He, X., He, F., & Wang, Y. (2023). Effect of calcium spray at flowering combined with post-harvest 1-MCP treatment on the preservation of grapes. Heliyon, 9(9), Article e19918. https://doi.org/10.1016/j.heliyon.2023.e19918
Shiri, M. A., Ghasemnezhad, M., Moghadam, J. F., & Ebrahimi, R. (2015). Effect of CaCl2 sprays at different fruit development stages on postharvest keeping quality of “Hayward” kiwifruit. Journal of Food Processing and Preservation, 40(4), 624–635. https://doi.org/10.1111/jfpp.12642
Sinha, A., Jawandha, S. K., Gill, P. P. S., & Singh, H. (2019). Influence of pre-harvest sprays of calcium nitrate on storability and quality attributes of plum fruits. Journal of Food Science and Technology, 56, 1427–1437. https://doi.org/10.1007/s13197-019-03621-z
Sotiropoulos, T., Voulgarakis, A., Karaiskos, D., Chatzistathis, T., Manthos, I., Dichala, O., & Mpountla, A. (2021). Foliar calcium fertilizers impact on several fruit quality characteristics and leaf and fruit nutritional status of the ‘Hayward’ kiwifruit cultivar. Agronomy, 11(2), Article 235. https://doi.org/10.3390/agronomy11020235
Souza, J. M. A., Leonel, S., Leonel, M., Garcia, E. L., Ribeiro, L. R., Ferreira, R. B., Martins, R. C., Silva, M. S., Monteiro, L. N. H., & Duarte, A. S. (2023). Calcium nutrition in fig orchards enhance fruit quality at harvest and storage. Horticulturae, 9(1), Article 123. https://doi.org/10.3390/horticulturae9010123
Srivastava, A. K., & Malhotra, S. K. (2017). Nutrient use efficiency in perennial fruit crops – A review. Journal of Plant Nutrition, 40(13), 1928–1953. https://doi.org/10.1080/01904167.2016.1249798
Statista. (2023). Volumen de fruta fresca consumida a nivel mundial entre 2018 y 2028. https://es.statista.com/estadisticas/1308998/consumo-mundial-de-fruta-fresca-a-nivel-mundial/#:~:text=En%202022%2C%20se%20consumieron%20a,millones%20de%20kilogramos%20en%202028
Storey, R., Jones, R. G. W., Schachtman, D. P., & Treeby, M. T. (2003). Calcium-accumulating cells in the meristematic region of grapevine root apices. Functional Plant Biology, 30(6), 719–727. https://doi.org/10.1071/FP02212
Sweetman, C., Miller, T. K., Booth, N. J., Shavrukov, Y., Jenkins, C. L. D., Soole, K. L., & Day, D. A. (2020). Identification of alternative mitochondrial electron transport pathway components in chickpea indicates a differential response to salinity stress between cultivars. International Journal of Molecular Sciences, 21(11), Article 3844. https://doi.org/10.3390/ijms21113844
Teixeira, G. C. M., Pinsetta Junior, J. S., Mattiuz, B.-H., Prado, R. M., Corréa, A. J., Rocha, A. M. S., & Vale, D. W. (2022). Spraying of calcium carbonate nanoparticles on pineapple fruit reduces sunburn damage. South African Journal of Botany, 148, 643–651. https://doi.org/10.1016/j.sajb.2022.04.004
Thakur, R. J., Shaikh, H., Gat, Y., & Waghmare, R. B. (2019). Effect of calcium chloride extracted from eggshell in maintaining quality of selected fresh-cut fruits. International Journal of Recycling of Organic Waste in Agriculture, 8(Suppl 1), 27–36. https://doi.org/10.1007/s40093-019-0260-z
Thor, K. (2019). Calcium – nutrient and messenger. Frontiers in Plant Science, 10, Article 440. https://doi.org/10.3389/fpls.2019.00440
Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., & Qi, Z. (2017). CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiology, 173(2), 1342–1354. https://doi.org/10.1104/pp.16.01222
Watanabe, T., Tomizaki, R., Watanabe, R., Maruyama, H., Shinano, T., Urayama, M., & Kanayama, Y. (2021). Ionomic differences between tomato introgression line IL8–3 and its parent cultivar M82 with different trends to the incidence of blossom-end rot. Scientia Horticulturae, 287, Article 110266. https://doi.org/10.1016/j.scienta.2021.110266
White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511. https://doi.org/10.1093/aob/mcg164
Winkler, A., & Knoche, M. (2019). Calcium and the physiology of sweet cherries: A review. Scientia Horticulturae, 245, 107–115. https://doi.org/10.1016/j.scienta.2018.10.012
Wu, Y., Yang, X., Wang, X., Yan, L., Hu, X., & Lian, M. (2023). Effect of foliar calcium fertilization on fruit quality, cell wall enzyme activity and expression of key genes in Chinese cherry. International Journal of Fruit Science, 23(1), 200–216. https://doi.org/10.1080/15538362.2023.2265656
Xu, H., Qiao, P., Pan, J., Qin, Z., Li, X., Khoo, H. E., & Dong, X. (2023). CaCl2 treatment effectively delays postharvest senescence of passion fruit. Food Chemistry, 417, Article 135786. https://doi.org/10.1016/j.foodchem.2023.135786
Xu, Y., Liu, J., Zang, N., Yin, Z., & Wang, A. (2022). Effects of calcium application on apple fruit softening during storage revealed by proteomics and phosphoproteomics. Horticultural Plant Journal, 8(4), 408–422. https://doi.org/10.1016/j.hpj.2022.03.002
Yahia, E. M., Carrillo-López, A., & Sañudo, A. (2019). Physiological disorders and their control. In E. M. Yahia (Ed.), Postharvest technology of perishable horticultural commodities (pp. 499–527). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813276-0.00015-8
Yu, J., Zhang, Y., Liu, J., Wang, L., Liu, P., Yin, Z., Guo, S., Ma, J., Lu, Z., Wang, T., She, Y., Miao, Y., Ma, L., Chen, S., Li, Y., & Dai, S. (2018). Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass. Planta, 248, 1079–1099. https://doi.org/10.1007/s00425-018-2940-8
Yu, J., Zhu, M., Bai, M., Xu, Y., Fan, S., & Yang, G. (2020). Effect of calcium on relieving berry cracking in grape (Vitis vinifera L.) ‘Xiangfei’. PeerJ, 8, Article e9896. https://doi.org/10.7717/peerj.9896
Zhang, L., Wang, P., Chen, F., Lai, S., Yu, H., & Yang, H. (2019). Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage. Food Chemistry, 289, 40–48. https://doi.org/10.1016/j.foodchem.2019.03.008
Zhang, M., Zhang, Q., Tian, C., Liu, G., Pan, Y., Xu, X., Shi, X., Zhang, Z., & Meng, L. (2022). Physiological and transcriptome analyses of CaCl2 treatment to alleviate chilling injury in pineapple. Plants, 11(17), Article 2215. https://doi.org/10.3390/plants11172215
Zhang, X., & Cui, Z. (2023). Review of fruit cork spot disorder of Asian pear (Pyrus spp.). Frontiers in Plant Science, 14, Article 1211451. https://doi.org/10.3389%2Ffpls.2023.1211451
Zhi, H. H., Liu, Q. Q., Dong, Y., Liu, M. P., & Zong, W. (2017). Effect of calcium dissolved in slightly acidic electrolyzed water on antioxidant system, calcium distribution, and cell wall metabolism of peach in relation to fruit browning. The Journal of Horticultural Science and Biotechnology, 92(6), 621–629. https://doi.org/10.1080/14620316.2017.1309994
Zhu, M., Yu, J., Wang, R., Zeng, Y., Kang, L., & Chen, Z. (2023). Nano-calcium alleviates the cracking of nectarine fruit and improves fruit quality. Plant Physiology and Biochemistry, 196, 370–380. https://doi.org/10.1016/j.plaphy.2023.01.058
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Ismael de Jesus Matos Viégas, Luma Castro de Souza, Eric Victor de Oliveira Ferreira, Milton Garcia Costa, Glauco André dos Santos Nogueira, Vitor Resende do Nascimento, Cândido Ferreira de Oliveira Neto. (2024). Changes in calcium accumulation and utilization efficiency and their impact on recycling, immobilization, and export across the oil palm cycle. Oil Crop Science, 9(3), p.143. https://doi.org/10.1016/j.ocsci.2024.06.004.
2. Mayerlin Orjuela-Angulo, Jesus H. Camacho-Tamayo, Helber E. Balaguera-López. (2024). Cultivation location and agrometeorological conditions influence pre-harvest variables of Japanese plum fruit in the Colombian tropics. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(12) https://doi.org/10.1590/1807-1929/agriambi.v28n12e284789.
3. Masood Ahmad, Waleed Iqbal, Uzair Ahmed, Aftab Jamal, Muhammad Farhan Saeed, Mohamed Soliman Elshikh, Mohamed Farouk Elsadek, Mohammad Ajmal Ali, Jakub Černý, Domenico Ronga. (2025). Enhancing floret persistence and bloom duration in gladiolus through foliar-applied calcium: a sustainable approach to floriculture. The Journal of Horticultural Science and Biotechnology, , p.1. https://doi.org/10.1080/14620316.2025.2450697.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2024 Agronomía Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaSe autoriza la reproducción y citación del material que aparece en la revista, siempre y cuando se indique de manera explícita: nombre de la revista, nombre del autor(es), año, volumen, número y páginas del artículo fuente. Las ideas y afirmaciones consignadas por los autores están bajo su responsabilidad y no interpretan necesariamente las opiniones y políticas de la Universidad Nacional de Colombia. La mención de productos o firmas comerciales en la revista no implica una recomendación o apoyo por parte de la Universidad ni de la Facultad; el uso de tales productos debe ceñirse a las recomendaciones de las etiquetas.
La licencia Creative Commons utilizada por Agronomía Colombiana es la siguiente: Reconocimiento – NoComercial – CompartirIgual (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/
Los autores que publican sus artículos en Agronomía Colombiana ceden de manera indefinida, todos los derechos patrimoniales, es decir, transformación, reproducción, comunicación pública, y distribución, y son otorgados sin ninguna limitación en cuanto a territorio se refiere al Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia