Effect of operational variables on the extraction of compounds with antioxidant capacity from chicory roots
Efecto de las variables operativas sobre la extracción de compuestos con capacidad antioxidante de raícesde achicoria
DOI:
https://doi.org/10.15446/agron.colomb.v42n2.112040Palabras clave:
drying methods, antioxidant extraction, phenolic content, optimization model (en)métodos de secado, extracción de antioxidantes, contenido fenólico, modelo de optimización (es)
Descargas
Polyphenol solvent extraction from vegetable matrices has gained significant importance in various sectors, including food, pharmaceuticals, and agro-industries. This research focuses on the experimental design of Batch extraction procedures for obtaining polyphenols from dried and milled chicory roots. Air-forced and vacuum-drying techniques were employed to dry fresh chicory roots. The research examined the impact of operational variables on obtaining extracts from dried chicory roots. We developed a comprehensive mathematical model using diffusion transfer principles, taking into account various operational factors. We integrated the model into the optimization tool General Algebraic Modeling System (GAMS) and subsequently validated it through experimentation. The results demonstrated strong agreement between the theoretical and experimental data, with satisfactory values for both the root mean square error and correlation coefficients. The optimal extraction conditions that yielded maximum outputs were 50ºC temperature, 1.10 m s-1 agitation speed, 50% ethanol concentration, and 20 ml solvent per gram of flour. Moreover, we observed higher diffusivity coefficients for polyphenolic compounds and lower activation energy values for extracts derived from vacuum-dried chicory root flour at 60ºC and 25 mm Hg pressure. Overall, the proposed mathematical model effectively predicted the described behavior with satisfactory accuracy.
La extracción por solvente de polifenoles a partir de matrices vegetales ha ganado gran importancia en diversos sectores, incluidos el alimentario, farmacéutico y agroindustrial. Este estudio se centra en el diseño experimental de la operación de extracción Batch para la obtención de polifenoles a partir de raíces de achicoria deshidratadas y molidas. Se emplearon las operaciones de secado al vacío y por convección forzada de aire para deshidratar raíces de achicoria fresca. Se evaluó el impacto de diversas variables operativas en la obtención de extractos a partir de raíces de achicoria deshidratadas. Se desarrolló un modelo matemático integral utilizando los principios de transferencia por difusión, considerando diversos factores operativos. Dicho modelo se implementó en la herramienta de optimización General Algebraic Modeling System (GAMS) y posteriormente se validó con resultados experimentales de laboratorio. Los resultados demostraron una fuerte concordancia entre los datos teóricos y experimentales, con valores satisfactorios tanto para el error cuadrático medio como para los coeficientes de correlación. Se encontró que las condiciones óptimas de extracción que produjeron resultados máximos fueron para la temperatura de 50ºC, velocidad de agitación de 1,10 m s-1, concentración de etanol del 50% y 20 ml de disolvente por gramo de harina. Además, se observaron mayores coeficientes de difusividad para los compuestos polifenólicos y valores de energía de activación más bajos para los extractos derivados de harina de raíces de achicoria deshidratadas al vacío a 60ºC y 25 mm Hg de presión. En general, el modelo matemático propuesto predijo eficazmente el comportamiento descrito con una precisión satisfactoria.
Referencias
Aguiñiga-Sánchez, I., Soto-Hernández, M., Cadena-Iñiguez, J., Suwalsky, M., Colina, J. R., Castillo, I., Rosado-Pérez, J., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2020). Phytochemical analysis and antioxidant and anti-inflammatory capacity of the extracts of fruits of the Sechium hybrid. Molecules, 25(20), Article 4637. https://doi.org/10.3390/molecules25204637
Al-Farsi, M. A., & Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chemistry, 108(3), 977–985. https://doi.org/10.1016/j.foodchem.2007.12.009
Amrouche, S., Faroudja, M., & Derriche, R. (2019). Extraction of phenolic compounds from Algerian Inula viscosa (L.) Aiton leaves: Kinetic study and modeling. Separation Science and Technology, 55(17), 3161–3174. https://doi.org/10.1080/01496395.2019.1675700
Aramburu, A., Basanta, M. F., De’nobili, M. D., & Rojas, A. M. (2020). Aprovechamiento integral de residuos agroindustriales de cereza (Prunus avium) con alto contenido de antioxidantes naturales. III Congreso Iberoamericano de Ingeniería de los Alimentos. Asociación de Ingenieros Alimentarios del Uruguay.
Aravindakshan, S., Nguyen, T. H. A., Kyomugasho, C., Buvé, C., Dewettinck, K., Van Loey, A., & Hendrickx, M. E. (2021). The impact of drying and rehydration on the structural properties and quality attributes of pre-cooked dried beans. Foods, 10(7), Article 1665. https://doi.org/10.3390/foods10071665
Balzarini, M. F., Reinheimer, M. A., Ciappini, M. C., & Scenna, N. J. (2018). Comparative study of hot air and vacuum drying on the drying kinetics and physicochemical properties of chicory roots. Journal of Food Science & Technology, 55, 4067–4078. https://doi.org/10.1007/s13197-018-3333-5
Boroski, M., Visentainer, J. V., Cottica, S. M., & Morais, D. R. (2015). Antioxidantes, principios e métodos analíticos (1st ed.). Appris, Curitiba.
Bouchez, A., Vauchel, P., Galvan D’Alessandro, L., & Dimitrov, K. (2020). Multi-objective optimization tool for ultrasound-assisted extraction including environmental impacts. Chemical Engineering Research and Design, 164, 324–337. https://doi.org/10.1016/j.cherd.2020.10.001
Carciochi, R. A., Sologubik, C. A., Fernández, M. B., Manrique, G. D., & Galvan D’Alessandro, L. (2018). Extraction of antioxidant phenolic compounds from brewer’s spent grain: Optimization and kinetics modeling. Antioxidants, 7(4), Article 45. https://doi.org/10.3390/antiox7040045
Chaiklahan, R., Chirasuwan, N., Triratana, P., Tia, S., & Bunnag, B. (2014). Effect of extraction temperature on the diffusion coefficient of polysaccharides from Spirulina and the optimal separation method. Biotechnology and Bioprocess Engineering, 19(2), 369–377. https://doi.org/10.1007/s12257-013-0733-2
Chanioti, S., Liadakis, G., & Tzia, C. (2023). Solid–liquid extraction. In T. Varzakas, & C. Tzia (Eds.), Food engineering handbook. Food processing engineering (pp. 256–283). Routledge Handbooks Online, CRC Press, Boca Raton. https://doi.org/10.1201/b17803
Cheung, Y., Siu, K., & Wu, J. (2013). Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi. Food and Bioprocess Technology, 6(10), 2656–2665. https://doi.org/10.1007/s11947-012-0929-z
Cissé, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109(1), 16–21. https://doi.org/10.1016/j.jfoodeng.2011.10.012
Crossley, J. I., & Aguilera, J. M. (2007). Modeling the effect of microstructure on food extraction. Journal of Food Process Engineering, 24(3), 161–177. https://doi.org/10.1111/j.1745-4530.2001.tb00538.x
Das, S., & Bera D. (2013). Mathematical model study on solvent extraction of carotene from carrot. International Journal of Research in Engineering and Technology, 2(9), 343–349. https://doi.org/10.15623/ijret.2013.0209052
Dzharov, V. V., Mishra, A. P., Shariati, M. A., Atanassova, M. S., & Plygun, S. (2016). Phytochemical contents in solid-liquid extraction of aqueous alcoholic extract of chicory (Cichorium intybus L.) leaves. Foods and Raw Materials, 4(2), 32–37. https://doi.org/10.21179/2308-4057-2016-2-32-37
Figueira, G. M., Park, K. J., Brod, F. P. R., & Honorio, S. L. (2004). Evaluation of desorption isotherms, drying rates and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. Journal of Food Engineering, 63, 273–280. https://doi.org/10.1016/j.jfoodeng.2003.06.001
Garcia-Perez, J. V., García-Alvarado, M. A., Carcel, J. A., & Mulet, A. (2010). Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. Journal of Food Engineering, 101(1), 49–58. https://doi.org/10.1016/j.jfoodeng.2010.06.008
Geankoplis, C. J. (1998). Transport processes and unit operations (3rd ed.). Compañia Editorial Continental, México.
Gubsky, S., Labazov, M., Samokhvalova, O., Grevtseva, N., & Gorodyska, O. (2018). Optimization of extraction parameters of phenolic antioxidants from defatted grape seeds flour by response surface methodology. Ukrainian Journal of Food Science, 7(4), 627–639. https://doi.org/10.24263/2304-974X-2018-7-4-8
Jokić, S., Velić, D., Bilić, M., Bucić-Kojić, A., Planinić, M., & Tomas, S. (2010). Modelling of the process of solid-liquid extraction of total polyphenols from soybeans. Czech Journal of Food Sciences, 28, 206–212. https://doi.org/10.17221/200/2009-CJFS
Kaur, H. (2020). Constituent phytochemicals from Catharanthus roseus. African Journal of Biomedical Research, 23(1), 9–15. https://www.ajol.info/index.php/ajbr/article/view/202130
Kostic, E., Nikolic, G. M., Mitic, S., Dimitrijevic, D., & Mitić, M. (2019). Optimization and kinetics of the solid-liquid extraction process of polyphenols from black mulberry fruit. Revista de Chimie, 70(3), 853–858. https://doi.org/10.37358/RC.19.3.7019
Lutz, M., Hernández, J., & Henríquez, C. (2015). Contenido fenólico y capacidad antioxidante en frutas y hortalizas frescas y secas cultivadas en Chile. CyTA-Journal of Food, 13(4), 541–547.
Mir, M. A., Kumar, A., & Goel, A. (2018). Phytochemical analysis and antioxidant properties of the various extracts of Catharanthus roseus. Journal of Chemical and Pharmaceutical Research, 10(10), 22–31.
Nova, C., Giraldo, L., & Cáceres-Roa, S. (2023). Extracción de polifenoles: una comparación a partir de cáscara de cacao húmeda vs cáscara de cacao secada. Ingeniería y Competitividad, 25(2), Article e-20612223. https://doi.org/10.25100/iyc.v25i2.12223
Palacios Flores, C. A. (2022). La achicoria en la tradición «¡A nadar, peces!»: aplicación, impacto y relevancia médica actual a través del derivado químico inulina. El Palma de la Juventud, 4, 97–111. https://doi.org/10.31381/epdlj.v4i4.4893
Pateiro, M., Gómez-Salazar, J. A., Jaime-Patlán, M., Sosa-Morales, M. E., & Lorenzo, J. M. (2021). Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants, 10(2), Article 181. https://doi.org/10.3390/antiox10020181
Perović, E., Tumbas Šaponjac, V., Kojić, J., Krulj, J., Moreno, D. A., García-Viguera, C., Bodroža-Solarov, M., & Ilić, N. (2021). Chicory (Cichorium intybus L.) as a food ingredient – Nutritional composition, bioactivity, safety, and health claims: A review. Food Chemistry, Article 336. https://doi.org/10.1016/j.foodchem.2020.127676
Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53(6), 2111–2117. https://doi.org/10.1021/jf0488110
Popescu, M., Danciu, T., Danciu, E., & Ivopol, G. (2013). Seabuckthorn oil extraction, a model for solid-liquid extraction process. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 75(4), 35–42.
Qu, W., Pan, Z., & Ma, H. (2010). Extraction modeling and activities of antioxidants from pomegranate marc. Journal of Food Engineering, 99(1), 16–23. https://doi.org/10.1016/j.jfoodeng.2010.01.020
Radha Krishnan, K., Azhagu Saravana Babu, P., Babuskin S., Sivarajan, M., & Sukumar, M. (2015). Modeling the kinetics of antioxidant extraction from Origanum vulgare and Brassica nigra. Chemical Engineering Communications, 202(12), 1577–1585. https://doi.org/10.1080/00986445.2014.957757
Sánchez-Sáenz, C. M., Oliveira, R. A., & Park, K. J. (2014). Evaluation of chicory roots submitted to HTST drying process and its optimization. Journal of Food Process Engineering, 38(1), 56–66. https://doi.org/10.1111/jfpe.12126
Sarkar, A., & Ghosh, U. (2017). Effect of extraction temperature and technique on phenolic compounds and antioxidant activity of Tamarindus indica seeds. Research Journal of Recent Sciences, 6(2), 10–15.
Shad, M. A., Nawaz, H., Rehman, T., & Ikram, N. (2013). Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of Cichorium intybus L.: A comparative study. Journal of Animal and Plant Sciences, 23(4), 1060–1066.
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidant properties of xhantan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945–948. https://doi.org/10.1021/jf00018a005
Sun, Y., Su, W., Zhang, W., Hu, Q., & Zeng, X. (2011). Optimizing the extraction of phenolic antioxidants from kudingcha made from Ilex kudingcha C. J. Tseng by using response surface methodology. Separation and Purification Technology, 78(3), 311–320. https://doi.org/10.1016/j.seppur.2011.01.038
Tao, Y., Zhang, Z., & Sun, D. W. (2014). Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrasonics Sonochemistry, 21(5), 1839–1848. https://doi.org/10.1016/j.ultsonch.2014.03.016
Teffane, M., Boudries, H., Bey, M. B., Kadi, A., & Boukhalfa, F. (2021). Effect of solvent type, extraction temperature, agitation speed and microwave power on phenolic compound extraction and antioxidant activity of apricot kernels (Prunus armeniaca L.). Current Bioactive Compounds, 18(1), Article e260821191386. https://doi.org/10.2174/1573407217666210215085507
Thach, N. A., & Thuy, N. M. (2017). Effect of extraction conditions on polyphenols, flavonoids, s-allyl cysteine content and antioxidant activity of black garlic extracts. Vietnam Journal of Science and Technology, 55(5A), 18–25.
Thaisamak, P., Jaturonglumlert, S., Varith, J., Taip, F. S., & Nitatwichit, C. (2019). Kinetic model of ultrasonic-assisted extraction with controlled temperature of c phycocyanin from S. platensis. International Journal of GEOMATE, 16(55), 176–183. https://doi.org/10.21660/2019.55.87291
Vallejo-Castillo, V., Córdoba, E., & Panchalo, A. (2021). Modelamiento matemático de la extracción asistida con ultrasonido de compuestos bioactivos presentes en la cebolla (Allium cepa L.): revisión y análisis teórico. Investigación e Innovación en Ingenierías, 9, 112–129. https://doi.org/10.17081/invinno.9.2.4772
Vega-Galvez, A., Gomez-Perez, L. S., Zepeda, F., Vidal, R. L., Grunenwald, F., Mejías, N., Pasten, A., Araya, M., & Ah-Hen, K. S. (2023). Assessment of bio-compounds content, antioxidant activity, and neuroprotective effect of red cabbage (Brassica oleracea var. Capitata rubra) processed by convective drying at different temperatures. Antioxidants, 12(9), Article 1789. https://doi.org/10.3390/antiox12091789
Vhangani, L. N., & Van Wyk, J. (2016). Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chemistry, 208, 301–308. https://doi.org/10.1016/j.foodchem.2016.03.100
Wang, M., Simon, J. E., Aviles, J. F., Zheng, Q. Y., & Tadmor, Y. (2003). Analysis of antioxidative phenolic compounds in artichoke. Journal of Agricultural & Food Chemistry, 51, 601–608. https://doi.org/10.1021/jf020792b
Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1(2), 264–270. https://doi.org/10.1002/aic.690010222
Zhang, J., Netzel, M. E., Pengelly, A., Sivakumar, D., & Sultanbawa, Y. (2023). A review of phytochemicals and bioactive properties in the Proteaceae family: A promising source of functional food. Antioxidants, 12(11), Article 1952. https://doi.org/10.3390/antiox12111952
Zhou, M., Chen, Q., Bi, J., Wang, Y., & Wu, X. (2017). Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system. Food Chemistry, 229, 574–579. https://doi.org/10.1016/j.foodchem.2017.02.131
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Agronomía Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaSe autoriza la reproducción y citación del material que aparece en la revista, siempre y cuando se indique de manera explícita: nombre de la revista, nombre del autor(es), año, volumen, número y páginas del artículo fuente. Las ideas y afirmaciones consignadas por los autores están bajo su responsabilidad y no interpretan necesariamente las opiniones y políticas de la Universidad Nacional de Colombia. La mención de productos o firmas comerciales en la revista no implica una recomendación o apoyo por parte de la Universidad ni de la Facultad; el uso de tales productos debe ceñirse a las recomendaciones de las etiquetas.
La licencia Creative Commons utilizada por Agronomía Colombiana es la siguiente: Reconocimiento – NoComercial – CompartirIgual (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/
Los autores que publican sus artículos en Agronomía Colombiana ceden de manera indefinida, todos los derechos patrimoniales, es decir, transformación, reproducción, comunicación pública, y distribución, y son otorgados sin ninguna limitación en cuanto a territorio se refiere al Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia