Publicado

2017-01-01

Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane

Evaluación de una cámara NIR para el monitoreo de productividad y efecto del nitrógeno en caña de azúcar

DOI:

https://doi.org/10.15446/agron.colomb.v35n1.60852

Palabras clave:

Nitrogen, yield, near infrared, precision agriculture, vegetation index, RPAS (en)
Nitrógeno, productividad, infrarrojo cercano, agricultura de precisión, índice de vegetación, RPAS (es)

Descargas

Autores/as

The main objective of the research carried out in the sugar productive sector in Colombia is to improve crop productivity of sugarcane. The rise of RPAS, together with the use of multispectral cameras, which allows for high spatial resolution images and spectral information outside the visible spectrum, has generated an alternative nondestructive technological approach to monitoring crop sugarcane that must be evaluated and adapted to the specific conditions of Colombia's sugar productive sector. In this context, this paper assesses the potential of a modified camera (NIR) to discriminate three varieties of sugarcane, as well as three doses of fertilization and estimating the sugarcane yield at an early stage, for the three varieties through multiple vegetation indices. In this study, no significant differences were found by vegetation index between fertilization doses, and only significant differences between varieties were found when the fertilization was normal or high. Likewise, multiple regressions between scores derived from vegetation indices after applying PCA and productivity produced determinations of up to 56%.

El principal objetivo de las investigaciones llevadas a cabo en el sector azucarero de Colombia es el de mejorar la productividad del cultivo de la caña de azúcar. El auge de los RPAS y el uso de cámaras multiespectrales ha generado un enfoque tecnológico alternativo para monitorear los cultivos de caña de azúcar de manera no destructiva ya que se pueden obtener imágenes de alta resolución espacial e información espectral fuera del espectro visible. Esta tecnología debe ser evaluada y adaptada a las condiciones específicas del sector azucarero del país. En este contexto, el presente artículo presenta los resultados del potencial de una cámara modificada (NIR) para discriminar tres variedades de caña de azúcar, así como tres dosis de fertilización y estimar tempranamente la productividad de tres variedades de caña de azúcar por medio de múltiples índices de vegetación. En este estudio no se encontraron diferencias significativas por índices de vegetación entre dosis de fertilización y sólo se encontraron diferencias significativas entre variedades cuando la dosis de fertilización fue normal o alta. Adicionalmente, por cada variedad evaluada, se hizo un análisis de componentes principales entre los índices de vegetación (existió una alta correlación entre los índices), y con los cinco primeros componentes se hizo una regresión múltiple para modelar las toneladas de caña por hectárea obteniéndose determinaciones de hasta el 56%.

Referencias

Abdel-Rahman, E. M., F. B. Ahmed, and M. van den Berg. 2010. Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 12S, S52-S57. Doi: 10.1016/j.jag.2009.11.003.

Aguiar, D.A., B.F. Theodor Rudorff, W.F. Silva, M. Adami, and M. Pupin Mello. 2011. Remote sensing images in support of environmental protocol: Monitoring the sugarcane harvest in Sao Paulo State, Brazil. Remote Sens. 3, 2682-2703. Doi: 10.3390/rs3122682.

Berger, A.G., D. Gaso, V.S. Ciganda, and A. Otero. 2013. Evaluation of the temporal dynamics of spectral indices and their relation-ship with biophysical variables on wheat for the purpose of yield estimation. 0039-0043. In: Anais XVI Simpósio Brasileiro de Sensoriamento Remoto (SBSR). Foz do Iguacu, Brazil.

Blackmer, T.M., J.S. Schepers, G.E. Varvel, and G. Meyer. 1996. Analysis of aerial photography for nitrogen stress within corn fields. Agron. J. 88, 729-733. Doi: 10.2134/agronj1996.00021962008800050008x.

Carbonell, J.A., R. Quintero, J. S. Torres, C.A. Osorio, C.H. Isaacs, and J.I. Victoria. 2011. Zonificación agroecológica para el cultivo de la caña de azúcar en el valle del río Cauca (cuarta aproximación). Principios metodológicos y aplicaciones. Servicio de Cooperación Técnica y Transferencia de Tecnología, Cenicaña. Cali, Colombia.

Duveiller, G., R. López-Lozano, and B. Baruth. 2013. Enhanced processing of 1-km spatial resolution Fapar time series for sugarcane yield forecasting and monitoring. Remote Sens. 5, 1091-1116. Doi: 10.3390/rs5031091.

Feng, W., X. Yao, Y. Zhu, Y.C. Tian, and W.X. Cao. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 28, 394-404. Doi: 10.1016/j.eja.2007.11.005.

Fernandes, J.L., J. Vieira, and R.A. Camargo. 2011. Sugarcane yield estimates using time series analysis of spot vegetation images. Sci. Agric. 68(2), 139-146. Doi: 10.1590/S0103-90162011000200002.

Foster, A.J., V. Gopal Kakani, J. Ge, and J. Mosali. 2012. Discrimination of switchgrass cultivars and nitrogen treatments using pigment profiles and hyperspectral leaf reflectance data. Remote Sens. 4, 2576-2594. Doi: 10.3390/rs4092576.

Galvao, L.S., A.R. Formaggio, and D.A. Tisot. 2005. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sens. Environ. 94, 523-534. Doi: 10.1016/j.rse.2004.11.012.

García, C.E., F.A. Herrera, and E. Erazo. 2014. Metodología básica para la generación de índices de vegetación mediante imágenes multiespectrales aerotransportadas aplicada en cultivos de caña de azúcar. In: Memorias XVI Simposio Internacional SELPER 2014. Sociedad Latinoamericana en Percepción Remota y Sistemas de Información Espacial. Medellin, Colombia.

Gopala Pillai, S. and L. Tian. 1999. In-field variability detection and spatial yield modeling for corn using digital aerial imaging. Trans. ASAE 42(6), 1911-1920. Doi: 10.13031/2013.13356.

Govender, M., K. Chetty, and H. Bulcock. 2007. A review of hyper-spectral remote sensing and its application in vegetation and water resource studies. Water SA 33(2), 145-152. Doi: 10.4314/wsa.v33i2.49049.

Hatfield, J.L., A.A. Gitelson, J.S. Schepers, and C.L. Walthall. 2008. Application of spectral remote sensing for agronomic decisions. Agron. J. 100, S-117 - S-131. Doi: 10.2134/agronj2006.0370c.

Hoyos-Villegas, V. and F.B. Fritschi. 2013. Relationships among vegetation indices derived from aerial photographs and soybean growth and yield. Crop Sci. 53, 2631-2642. Doi: 10.2135/cropsci2013.02.0126.

Hunt, E.R. Jr., P.C. Doraiswamy, J.E. McMurtrey, C.S.T. Daughtry, E.M. Perry, and B. Akhmedov. 2013. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21, 103-112. Doi: 10.1016/j.jag.2012.07.020.

Johnson, R.M., R.P. Viator, J.C. Veremis, E.P.Jr. Richard, and P.V. Zimba. 2008. Discrimination of sugarcane varieties with pigment profiles and high resolution, hyperspectral leaf reflectance data. J. Am. Soc. Sugar Cane Technol. 28, 63-75.

Lelong, C.C.D., P. Burger, G. Jubelin, B. Roux, S. Labbé, and F. Baret. 2008. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 8(5), 3557-3585. Doi: 10.3390/s8053557.

Lofton, J., B.S. Tubana, Y. Kanke, J. Teboh, H. Viator, and M. Dalen. 2012. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors 12, 7529-7547. Doi: 10.3390/s120607529.

Morel, J., P. Todoroff, A. Bégué, A. Bury, J.F. Martiné, and M. Petit. 2014. Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on Reunion Island. Remote Sens. 6, 6620-6635. Doi: 10.3390/rs6076620.

Mulianga, B., A. Bégué, M. Simoes, and P. Todoroff. 2013. Forecasting regional sugarcane yield based on time integraland spatial aggregation of MODIS NDVI. Remote Sens. 5, 2184-2199. Doi: 10.3390/rs5052184.

Murillo, P.J. and J.A. Carbonell. 2012. Principios y aplicaciones de la percepción remota en el cultivo de la caña de azúcar en Colombia. Servicio de Cooperación Técnica y Transferencia de Tecnología, Cenicaña. Cali, Colombia.

Ponzoni, F.J., Y.E. Shimabukuro, and T.M. Kuplich. 2012. Sensoriamente remoto da vegetacáo. 2nd ed. Oficina de Textos, Sao Paulo, Brazil.

Schmidt, E.J., G. Narciso, P. Frost, and C. Gers. 2000. Application of remote sensing technology in the sa sugar industry review of recent research findings. Proc. S. Afr. Sug. Technol. Ass. 74, 192-200.

Tetracam. 2015. ADC Lite. Tetracam's lightweight ADC ideal for unmanned aircraft. In: Tetracam better science through advanced imaging, http://www.tetracam.com/Products-ADC_Lite.htm; consulted: May 2016.

Victoria, J.I., C.A. Viveros, F.A. Salazar, J.C. Ángel, A.E. Bustillo, U. Castro, J. López, and C.A. Moreno. 2013. Catálogo de variedades de caña de azúcar. 3rd ed. Servicio de Cooperación Técnica y Transferencia de Tecnología, Cenicaña. Cali, Colombia.

Vieira, M.A., A.R. Formaggio, C.D. Rennó, C. Atzberger, D.A. Aguiar, and M.P. Mello. 2012. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 123, 553-562. Doi: 10.1016/j.rse.2012.04.011.

Cómo citar

APA

García, C. E., Montero, D. y Chica, H. A. (2017). Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane. Agronomía Colombiana, 35(1), 82–91. https://doi.org/10.15446/agron.colomb.v35n1.60852

ACM

[1]
García, C.E., Montero, D. y Chica, H.A. 2017. Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane. Agronomía Colombiana. 35, 1 (ene. 2017), 82–91. DOI:https://doi.org/10.15446/agron.colomb.v35n1.60852.

ACS

(1)
García, C. E.; Montero, D.; Chica, H. A. Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane. Agron. Colomb. 2017, 35, 82-91.

ABNT

GARCÍA, C. E.; MONTERO, D.; CHICA, H. A. Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane. Agronomía Colombiana, [S. l.], v. 35, n. 1, p. 82–91, 2017. DOI: 10.15446/agron.colomb.v35n1.60852. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/60852. Acesso em: 16 ene. 2025.

Chicago

García, Cesar Edwin, David Montero, y Hector Alberto Chica. 2017. «Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane». Agronomía Colombiana 35 (1):82-91. https://doi.org/10.15446/agron.colomb.v35n1.60852.

Harvard

García, C. E., Montero, D. y Chica, H. A. (2017) «Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane», Agronomía Colombiana, 35(1), pp. 82–91. doi: 10.15446/agron.colomb.v35n1.60852.

IEEE

[1]
C. E. García, D. Montero, y H. A. Chica, «Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane», Agron. Colomb., vol. 35, n.º 1, pp. 82–91, ene. 2017.

MLA

García, C. E., D. Montero, y H. A. Chica. «Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane». Agronomía Colombiana, vol. 35, n.º 1, enero de 2017, pp. 82-91, doi:10.15446/agron.colomb.v35n1.60852.

Turabian

García, Cesar Edwin, David Montero, y Hector Alberto Chica. «Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane». Agronomía Colombiana 35, no. 1 (enero 1, 2017): 82–91. Accedido enero 16, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/60852.

Vancouver

1.
García CE, Montero D, Chica HA. Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane. Agron. Colomb. [Internet]. 1 de enero de 2017 [citado 16 de enero de 2025];35(1):82-91. Disponible en: https://revistas.unal.edu.co/index.php/agrocol/article/view/60852

Descargar cita

CrossRef Cited-by

CrossRef citations3

1. Fatemeh Mousabeygi, Yousef Rezaei, Samira Akhavan. (2021). Assessment of maize water status using a consumer-grade camera and thermal imagery. Water Supply, 21(6), p.2543. https://doi.org/10.2166/ws.2020.270.

2. L. A. S. Cardoso, P. R. S. Farias, J. A. C. Soares, C. R. T. Caldeira, F. J. de Oliveira. (2024). Use of a UAV for statistical-spectral analysis of vegetation indices in sugarcane plants in the Eastern Amazon. International Journal of Environmental Science and Technology, 21(10), p.6947. https://doi.org/10.1007/s13762-024-05477-z.

3. Fatemeh Mousabeygi, Samira Akhavan, Yousef Rezaei. (2022). Assessment of consumer-grade camera-derived vegetation indices for monitoring nitrogen and leaf relative water content of maize. Spanish Journal of Agricultural Research, 20(1), p.e0203. https://doi.org/10.5424/sjar/2022201-17138.

Dimensions

PlumX

Visitas a la página del resumen del artículo

529

Descargas

Los datos de descargas todavía no están disponibles.