Publicado

2018-01-01

Boron-zinc interaction in the absorption of micronutrients by cotton

Interacción boro-zinc en la absorción de micronutrientes por el cultivo del algodón

DOI:

https://doi.org/10.15446/agron.colomb.v36n1.66539

Palabras clave:

Gossypium hirsutum L., copper, iron, manganese, nutritional efficiency. (en)
Gossypium hirsutum L., cobre, hierro, manganeso, eficiencia nutricional (es)

Descargas

Autores/as

  • Érica de Oliveira Araújo Universidade Federal da Grande Dourados
  • Elcio Ferreira Dos Santos Centro de Energia Nuclear na Agricultura (CENA/USP)
  • Marcos Antonio Camacho Universidade Estadual do Mato Grosso do Sul (UEMS)

B-Zn interaction modifies the nutritional dynamics of copper (Cu), iron (Fe) and manganese (Mn) in cotton. The main objective of this research was to evaluate the effect of B and Zn concentrations on the absorption of Cu, Fe and Mn in cotton plants grown in a nutrient solution. A completely randomized experimental design with three replicates was performed, in a 4×5 factorial scheme, corresponding to four concentrations of B (0, 20, 40 and 80 μM L-1) and five concentrations of Zn (0, 1, 2, 4 and 8 μM L-1). At 115 days after emergence, the plants were collected, divided into roots, shoots and fruits, and chemically analyzed. The results allowed to conclude that the Cu content and total Cu in the fruit, total Cu in the roots, Cu efficiency, Fe content in the roots, Fe absorption efficiency, Mn content in the fruit, and Mn absorption efficiency of cotton are influenced by the concentrations of B in the solution. The interaction between B and Zn affected the total Fe in the roots, Fe content and total Fe content in the fruit, Fe transport efficiency, total Mn in the shoots and Mn transport efficiency. In addition, Zn acts differently according to the supply of B and vice versa.

 

La interacción boro-zinc (B-Zn) modifica la dinámica nutricional del cobre (Cu), hierro (Fe) y manganeso (Mn) en el cultivo del algodón. El objetivo del presente trabajo fue evaluar el efecto de concentraciones de B y Zn sobre la absorción de Cu, Fe y Mn por plantas de algodón creciendo en solución nutritiva. Se utilizó un diseño completamente al azar con tres repeticiones en un esquema factorial 4×5, siendo cuatro las concentraciones de B (0, 20, 40 y 80 μM L-1) y cinco las concentraciones de Zn (0, 1, 2, 4 y 8 μM L-1). A los 115 días después de emergencia las plantas fueron recolectadas, divididas en raíz, parte aérea y frutos, y sometidas a análisis químicos. Los resultados permitieron concluir que el contenido y el total de Cu en el fruto, el contenido de Cu en la raíz, la eficiencia de utilización de Cu, el total de Fe en la raíz, la eficiencia de absorción de Fe, el total de Mn en el fruto y la eficiencia de absorción de Mn son influenciadas por las concentraciones de B en la solución. La interacción B-Zn afectó el contenido de Fe en la raíz, el contenido y el total de Fe en el fruto, eficiencia de transporte de Fe, el total de Mn en la parte aérea y la eficiencia del transporte de Mn, Adicionalmente Zn actúa de manera diferente de acuerdo al suministro de B y viceversa.

Referencias

Ahmed, N., M. Abid, F. Ahmad, M.A. Ullah, Q. Javaid, and M.A. Ali. 2011. Impact of boron fertilization on dry matter production and mineral constitution of irrigated cotton. Pakistan J. Bot. 43(6), 2903-2910.

Aibara, I. and K. Miwa. 2014. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant Cell Physiol. 55, 2027-2036. Doi: 10.1093/pcp/pcu156

Araújo, E.O., E.F. Santos, and M.A. Camacho. 2012. Interação boro e zinco no crescimento, desenvolvimento e nutrição do algodoeiro. Rev. Bras. Cienc. Agrar. 7(sup.), 720-727.

Araújo, E.O., E.F. Santos, and M.A. Camacho. 2013. Absorption of calcium and magnesium by cotton plant grown under different concentrations of boron and zinc. Agrária 8, 383-389.

Aref, F. 2011. Influence of zinc and boron nutrition on copper, manganese and iron concentrations in maize leaf. Aust. J. Basic Appl. Sci. 5(7), 52-62.

Assunção, A.G.L., D.P. Persson, S. Husted, J.K. Schj0rring, R.D. Alexander, and M.G.M. Aarts. 2013. Model of how plants sense zinc deficiency. Metallomics 5, 1110-1116. Doi: 10.1039/c3mt00070b

Baxter, I. 2009. Ionomics: studying the social network of mineral nutrients. Curr. Opin. Plant Biol. 12, 381-386. Doi: 10.1016/j.pbi.2009.05.002

Broadley, M.R., P.J. White, J.P. Hammond, I. Zelko, and A. Lux, A. 2007. Zinc in plants. New Phytol. 173, 677-702. Doi: 10.1111/j.1469-8137.2007.01996.x

Dursun, A., M. Turan, M. Ekinci, A. Gunes, N. Ataoglu, A. Esringu, and E. Yildirim. 2010. Effects of boron fertilizer on tomato, pepper and cucumber yields and chemical composition. Commun. Soil Sci. Plant Anal. 41(1), 1576-1593. Doi: 10.1080/00103624.2010.485238

Eptein, E. and A.J. Bloom. 2006. Mineral nutrition of plants: principles and perspectives. Editora Planta, Londrina, Brazil.

Esringu, A., M. Turan, A. Gunes, A. Esitken, and P. Sambo. 2011. Boron application improves on yield and chemical composition of strawberry. Acta Agric Scand. B. 8, 1651-1913. Doi: 10.1080/09064711003776867

Jasrotia, A., P. Bakshi, V.K. Wali, B. Bhushan, and D.J. Bhat. 2014. Influence of girdling and zinc and boron application on growth, quality and leaf nutrient status of olive cv. Frontio. Afr. J. Agr. Res. 9, 1354-1361.

Li, B., S.E. Mckeand, and H.L. Allen. 1991. Genetic variation in nitrogen use efficiency of loblolly pine seedlings. Forest Sci. 37(2), 613-626.

Lima Neto, A.J. de and W. Natale. 2014. Content, accumulation and nutritional efficiency of nutrients on rootstocks of caramboleira in composted substrate with zinc. Agrária 9, 236-243.

Malavolta, E. 2006. Manual of mineral nutrition of plants. Agronômica Ceres, São Paulo, Brazil.

Malavolta, E., C.G. Vitti, and S.A. Oliveira. 1997. Assessment of nutritional status of plants: principles and applications. Brazilian Association for research of phosphate and Potash, Piracicaba, Brazil.

Milner, M.J., J. Seamon, E. Craft, and L.V. Kochian. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J. Exp. Bot. 64, 369-381. Doi: 10.1093/jxb/ers315

Morgan, J.B. and E.L. Connolly. 2013. Plant-Soil Interactions: Nutrient Uptake. Nat. Ed. Knowl. 4(8), 2.

Nasim, M., Z. Rengel, T. Aziz, B.D. Regmi, and M. Saqib. 2015. Boron toxicity alleviation by zinc application in two barley cultivars differing in tolerance boron toxicity. Pak. J. Agri. Sci. 52, 151-158.

Rajaie, M., A.K. Ejraie, H.R. Owliaie, and I. Tavakoli. 2009. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int. J. Plant Prod. 3(1), 39-50.

Rochester, I.J. and G.A. Constable. 2015. Improvements in nutrient uptake and nutrient use-efficiency in cotton cultivars released between 1973 and 2006. Field Crops Res. 173, 14-21. Doi: 10.1016/j.fcr.2015.01.001

Salvador, J.O., A. Moreira, E. Malavolta, and C.P. Cabral. 2003. Influência do boro e do manganês no crescimento e na composição mineral de mudas de goiabeira. Ciênc. agrotec. 27(2), 325-331.

Siddiqi, M.Y. and A.D.M. Glass. 1981. Utilisation index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J. Plant Nutr. 4, 289-302.

Swiader, J.M., Y. Chyan, and F.G. Freiji. 1994. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. J. Plant Nutr. 17(10), 1687-1699.

Wimmer, M.A. and T. Eichert. 2013. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 203, 25-32. Doi: 10.1016/j.plantsci.2012.12.012.

Cómo citar

APA

Araújo, Érica de O., Dos Santos, E. F. y Camacho, M. A. (2018). Boron-zinc interaction in the absorption of micronutrients by cotton. Agronomía Colombiana, 36(1), 51–57. https://doi.org/10.15446/agron.colomb.v36n1.66539

ACM

[1]
Araújo, Érica de O., Dos Santos, E.F. y Camacho, M.A. 2018. Boron-zinc interaction in the absorption of micronutrients by cotton. Agronomía Colombiana. 36, 1 (ene. 2018), 51–57. DOI:https://doi.org/10.15446/agron.colomb.v36n1.66539.

ACS

(1)
Araújo, Érica de O.; Dos Santos, E. F.; Camacho, M. A. Boron-zinc interaction in the absorption of micronutrients by cotton. Agron. Colomb. 2018, 36, 51-57.

ABNT

ARAÚJO, Érica de O.; DOS SANTOS, E. F.; CAMACHO, M. A. Boron-zinc interaction in the absorption of micronutrients by cotton. Agronomía Colombiana, [S. l.], v. 36, n. 1, p. 51–57, 2018. DOI: 10.15446/agron.colomb.v36n1.66539. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/66539. Acesso em: 17 ene. 2025.

Chicago

Araújo, Érica de Oliveira, Elcio Ferreira Dos Santos, y Marcos Antonio Camacho. 2018. «Boron-zinc interaction in the absorption of micronutrients by cotton». Agronomía Colombiana 36 (1):51-57. https://doi.org/10.15446/agron.colomb.v36n1.66539.

Harvard

Araújo, Érica de O., Dos Santos, E. F. y Camacho, M. A. (2018) «Boron-zinc interaction in the absorption of micronutrients by cotton», Agronomía Colombiana, 36(1), pp. 51–57. doi: 10.15446/agron.colomb.v36n1.66539.

IEEE

[1]
Érica de O. Araújo, E. F. Dos Santos, y M. A. Camacho, «Boron-zinc interaction in the absorption of micronutrients by cotton», Agron. Colomb., vol. 36, n.º 1, pp. 51–57, ene. 2018.

MLA

Araújo, Érica de O., E. F. Dos Santos, y M. A. Camacho. «Boron-zinc interaction in the absorption of micronutrients by cotton». Agronomía Colombiana, vol. 36, n.º 1, enero de 2018, pp. 51-57, doi:10.15446/agron.colomb.v36n1.66539.

Turabian

Araújo, Érica de Oliveira, Elcio Ferreira Dos Santos, y Marcos Antonio Camacho. «Boron-zinc interaction in the absorption of micronutrients by cotton». Agronomía Colombiana 36, no. 1 (enero 1, 2018): 51–57. Accedido enero 17, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/66539.

Vancouver

1.
Araújo Érica de O, Dos Santos EF, Camacho MA. Boron-zinc interaction in the absorption of micronutrients by cotton. Agron. Colomb. [Internet]. 1 de enero de 2018 [citado 17 de enero de 2025];36(1):51-7. Disponible en: https://revistas.unal.edu.co/index.php/agrocol/article/view/66539

Descargar cita

CrossRef Cited-by

CrossRef citations6

1. Miguel Vera-Vega, Jorge Jimenez-Davalos, Gaston Zolla. (2022). The micronutrient content in underutilized crops: the Lupinus mutabilis sweet case. Scientific Reports, 12(1) https://doi.org/10.1038/s41598-022-19202-8.

2. Irish Lorraine B. Pabuayon, Katie L. Lewis, Glen L. Ritchie. (2021). Hidden fractions: Another look at micronutrient and sodium partitioning in modern cotton cultivars. Crop Science, 61(5), p.3623. https://doi.org/10.1002/csc2.20569.

3. P. Liščáková, A. Nawaz, M. Molnárová. (2022). Reciprocal effects of copper and zinc in plants. International Journal of Environmental Science and Technology, 19(9), p.9297. https://doi.org/10.1007/s13762-021-03854-6.

4. A. L. E. Fattobene. (2022). Inorganic Nanopesticides and Nanofertilizers. , p.53. https://doi.org/10.1007/978-3-030-94155-0_2.

5. Sajid Masood, Liaqat Ali, Tanveer Hussain, Mehwish Liaquat, Muhammad Aon, Atique- ur-Rehman, Muhammad Zafar-ul-Hye. (2024). Foliar application of gibberellic acid and boric acid enhances boron translocation in leaves and improves the yield of guava ( Pisidium gujava L.) cv. Sada Bahar Gola . Journal of Plant Nutrition, , p.1. https://doi.org/10.1080/01904167.2024.2430548.

6. N. Surdyk, A. Battilani, L. Cary, L. Sandei, M. Pettenati, W. Kloppmann. (2025). Impacts of wastewater irrigation on Mediterranean soil and food: A three-year case study in Italy. Agricultural Water Management, 308, p.109255. https://doi.org/10.1016/j.agwat.2024.109255.

Dimensions

PlumX

Visitas a la página del resumen del artículo

431

Descargas

Los datos de descargas todavía no están disponibles.