Boron-zinc interaction in the absorption of micronutrients by cotton
Interacción boro-zinc en la absorción de micronutrientes por el cultivo del algodón
DOI:
https://doi.org/10.15446/agron.colomb.v36n1.66539Palabras clave:
Gossypium hirsutum L., copper, iron, manganese, nutritional efficiency. (en)Gossypium hirsutum L., cobre, hierro, manganeso, eficiencia nutricional (es)
Descargas
B-Zn interaction modifies the nutritional dynamics of copper (Cu), iron (Fe) and manganese (Mn) in cotton. The main objective of this research was to evaluate the effect of B and Zn concentrations on the absorption of Cu, Fe and Mn in cotton plants grown in a nutrient solution. A completely randomized experimental design with three replicates was performed, in a 4×5 factorial scheme, corresponding to four concentrations of B (0, 20, 40 and 80 μM L-1) and five concentrations of Zn (0, 1, 2, 4 and 8 μM L-1). At 115 days after emergence, the plants were collected, divided into roots, shoots and fruits, and chemically analyzed. The results allowed to conclude that the Cu content and total Cu in the fruit, total Cu in the roots, Cu efficiency, Fe content in the roots, Fe absorption efficiency, Mn content in the fruit, and Mn absorption efficiency of cotton are influenced by the concentrations of B in the solution. The interaction between B and Zn affected the total Fe in the roots, Fe content and total Fe content in the fruit, Fe transport efficiency, total Mn in the shoots and Mn transport efficiency. In addition, Zn acts differently according to the supply of B and vice versa.
La interacción boro-zinc (B-Zn) modifica la dinámica nutricional del cobre (Cu), hierro (Fe) y manganeso (Mn) en el cultivo del algodón. El objetivo del presente trabajo fue evaluar el efecto de concentraciones de B y Zn sobre la absorción de Cu, Fe y Mn por plantas de algodón creciendo en solución nutritiva. Se utilizó un diseño completamente al azar con tres repeticiones en un esquema factorial 4×5, siendo cuatro las concentraciones de B (0, 20, 40 y 80 μM L-1) y cinco las concentraciones de Zn (0, 1, 2, 4 y 8 μM L-1). A los 115 días después de emergencia las plantas fueron recolectadas, divididas en raíz, parte aérea y frutos, y sometidas a análisis químicos. Los resultados permitieron concluir que el contenido y el total de Cu en el fruto, el contenido de Cu en la raíz, la eficiencia de utilización de Cu, el total de Fe en la raíz, la eficiencia de absorción de Fe, el total de Mn en el fruto y la eficiencia de absorción de Mn son influenciadas por las concentraciones de B en la solución. La interacción B-Zn afectó el contenido de Fe en la raíz, el contenido y el total de Fe en el fruto, eficiencia de transporte de Fe, el total de Mn en la parte aérea y la eficiencia del transporte de Mn, Adicionalmente Zn actúa de manera diferente de acuerdo al suministro de B y viceversa.
Referencias
Ahmed, N., M. Abid, F. Ahmad, M.A. Ullah, Q. Javaid, and M.A. Ali. 2011. Impact of boron fertilization on dry matter production and mineral constitution of irrigated cotton. Pakistan J. Bot. 43(6), 2903-2910.
Aibara, I. and K. Miwa. 2014. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant Cell Physiol. 55, 2027-2036. Doi: 10.1093/pcp/pcu156
Araújo, E.O., E.F. Santos, and M.A. Camacho. 2012. Interação boro e zinco no crescimento, desenvolvimento e nutrição do algodoeiro. Rev. Bras. Cienc. Agrar. 7(sup.), 720-727.
Araújo, E.O., E.F. Santos, and M.A. Camacho. 2013. Absorption of calcium and magnesium by cotton plant grown under different concentrations of boron and zinc. Agrária 8, 383-389.
Aref, F. 2011. Influence of zinc and boron nutrition on copper, manganese and iron concentrations in maize leaf. Aust. J. Basic Appl. Sci. 5(7), 52-62.
Assunção, A.G.L., D.P. Persson, S. Husted, J.K. Schj0rring, R.D. Alexander, and M.G.M. Aarts. 2013. Model of how plants sense zinc deficiency. Metallomics 5, 1110-1116. Doi: 10.1039/c3mt00070b
Baxter, I. 2009. Ionomics: studying the social network of mineral nutrients. Curr. Opin. Plant Biol. 12, 381-386. Doi: 10.1016/j.pbi.2009.05.002
Broadley, M.R., P.J. White, J.P. Hammond, I. Zelko, and A. Lux, A. 2007. Zinc in plants. New Phytol. 173, 677-702. Doi: 10.1111/j.1469-8137.2007.01996.x
Dursun, A., M. Turan, M. Ekinci, A. Gunes, N. Ataoglu, A. Esringu, and E. Yildirim. 2010. Effects of boron fertilizer on tomato, pepper and cucumber yields and chemical composition. Commun. Soil Sci. Plant Anal. 41(1), 1576-1593. Doi: 10.1080/00103624.2010.485238
Eptein, E. and A.J. Bloom. 2006. Mineral nutrition of plants: principles and perspectives. Editora Planta, Londrina, Brazil.
Esringu, A., M. Turan, A. Gunes, A. Esitken, and P. Sambo. 2011. Boron application improves on yield and chemical composition of strawberry. Acta Agric Scand. B. 8, 1651-1913. Doi: 10.1080/09064711003776867
Jasrotia, A., P. Bakshi, V.K. Wali, B. Bhushan, and D.J. Bhat. 2014. Influence of girdling and zinc and boron application on growth, quality and leaf nutrient status of olive cv. Frontio. Afr. J. Agr. Res. 9, 1354-1361.
Li, B., S.E. Mckeand, and H.L. Allen. 1991. Genetic variation in nitrogen use efficiency of loblolly pine seedlings. Forest Sci. 37(2), 613-626.
Lima Neto, A.J. de and W. Natale. 2014. Content, accumulation and nutritional efficiency of nutrients on rootstocks of caramboleira in composted substrate with zinc. Agrária 9, 236-243.
Malavolta, E. 2006. Manual of mineral nutrition of plants. Agronômica Ceres, São Paulo, Brazil.
Malavolta, E., C.G. Vitti, and S.A. Oliveira. 1997. Assessment of nutritional status of plants: principles and applications. Brazilian Association for research of phosphate and Potash, Piracicaba, Brazil.
Milner, M.J., J. Seamon, E. Craft, and L.V. Kochian. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J. Exp. Bot. 64, 369-381. Doi: 10.1093/jxb/ers315
Morgan, J.B. and E.L. Connolly. 2013. Plant-Soil Interactions: Nutrient Uptake. Nat. Ed. Knowl. 4(8), 2.
Nasim, M., Z. Rengel, T. Aziz, B.D. Regmi, and M. Saqib. 2015. Boron toxicity alleviation by zinc application in two barley cultivars differing in tolerance boron toxicity. Pak. J. Agri. Sci. 52, 151-158.
Rajaie, M., A.K. Ejraie, H.R. Owliaie, and I. Tavakoli. 2009. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int. J. Plant Prod. 3(1), 39-50.
Rochester, I.J. and G.A. Constable. 2015. Improvements in nutrient uptake and nutrient use-efficiency in cotton cultivars released between 1973 and 2006. Field Crops Res. 173, 14-21. Doi: 10.1016/j.fcr.2015.01.001
Salvador, J.O., A. Moreira, E. Malavolta, and C.P. Cabral. 2003. Influência do boro e do manganês no crescimento e na composição mineral de mudas de goiabeira. Ciênc. agrotec. 27(2), 325-331.
Siddiqi, M.Y. and A.D.M. Glass. 1981. Utilisation index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J. Plant Nutr. 4, 289-302.
Swiader, J.M., Y. Chyan, and F.G. Freiji. 1994. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. J. Plant Nutr. 17(10), 1687-1699.
Wimmer, M.A. and T. Eichert. 2013. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 203, 25-32. Doi: 10.1016/j.plantsci.2012.12.012.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Miguel Vera-Vega, Jorge Jimenez-Davalos, Gaston Zolla. (2022). The micronutrient content in underutilized crops: the Lupinus mutabilis sweet case. Scientific Reports, 12(1) https://doi.org/10.1038/s41598-022-19202-8.
2. Irish Lorraine B. Pabuayon, Katie L. Lewis, Glen L. Ritchie. (2021). Hidden fractions: Another look at micronutrient and sodium partitioning in modern cotton cultivars. Crop Science, 61(5), p.3623. https://doi.org/10.1002/csc2.20569.
3. P. Liščáková, A. Nawaz, M. Molnárová. (2022). Reciprocal effects of copper and zinc in plants. International Journal of Environmental Science and Technology, 19(9), p.9297. https://doi.org/10.1007/s13762-021-03854-6.
4. A. L. E. Fattobene. (2022). Inorganic Nanopesticides and Nanofertilizers. , p.53. https://doi.org/10.1007/978-3-030-94155-0_2.
5. Sajid Masood, Liaqat Ali, Tanveer Hussain, Mehwish Liaquat, Muhammad Aon, Atique- ur-Rehman, Muhammad Zafar-ul-Hye. (2024). Foliar application of gibberellic acid and boric acid enhances boron translocation in leaves and improves the yield of guava ( Pisidium gujava L.) cv. Sada Bahar Gola . Journal of Plant Nutrition, , p.1. https://doi.org/10.1080/01904167.2024.2430548.
6. N. Surdyk, A. Battilani, L. Cary, L. Sandei, M. Pettenati, W. Kloppmann. (2025). Impacts of wastewater irrigation on Mediterranean soil and food: A three-year case study in Italy. Agricultural Water Management, 308, p.109255. https://doi.org/10.1016/j.agwat.2024.109255.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Agronomía Colombiana
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaSe autoriza la reproducción y citación del material que aparece en la revista, siempre y cuando se indique de manera explícita: nombre de la revista, nombre del autor(es), año, volumen, número y páginas del artículo fuente. Las ideas y afirmaciones consignadas por los autores están bajo su responsabilidad y no interpretan necesariamente las opiniones y políticas de la Universidad Nacional de Colombia. La mención de productos o firmas comerciales en la revista no implica una recomendación o apoyo por parte de la Universidad ni de la Facultad; el uso de tales productos debe ceñirse a las recomendaciones de las etiquetas.
La licencia Creative Commons utilizada por Agronomía Colombiana es la siguiente: Reconocimiento – NoComercial – CompartirIgual (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/
Los autores que publican sus artículos en Agronomía Colombiana ceden de manera indefinida, todos los derechos patrimoniales, es decir, transformación, reproducción, comunicación pública, y distribución, y son otorgados sin ninguna limitación en cuanto a territorio se refiere al Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia