Publicado

2020-05-01

Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico

Caracterización nutricional de hojas, semillas, cáscara y flores de Moringa oleifera de dos regiones de México

DOI:

https://doi.org/10.15446/agron.colomb.v38n2.82644

Palabras clave:

Trolox Equivalent Antioxidant Capacity, Oxygen Radical Absorbance Capacity, phenols, flavonoids, proximate composition (en)
Capacidad Antioxidante Equivalente de Trolox, Capacidad Absorción Radicales de Oxígeno, fenoles, flavonoides, composición proximal (es)

Descargas

Autores/as

Moringa oleifera (MO) is a native tree species found in the south of the Himalayas, India, Bangladesh, Afghanistan and Pakistan that is used commercially to produce tea, animal fodder and herbal medicines. The aim of the present study was to determine the nutritional characteristics of different parts of the MO plant from two regions of Mexico (States of Guerrero and Sonora). The proximal composition analyses (protein, lipids, ashes and fiber) were carried out according to the methods of the Association of Official Analytical Chemists (AOAC), and the antioxidant capacity and phenolic compounds were determined by spectrophotometric methods. Protein (38.5%) and lipid contents (42.2%) were higher in MO seeds compared to other plant parts. These results were similar between the two regions of Mexico that were evaluated. MO flowers from Guerrero showed the highest content of phenols and tannins (1908.71 mg Gallic Acid Equivalents (GAE) 100 g-1, 220.27 mg Catechin Equivalents (CE) 100 g-1, respectively) while MO leaves from Sonora showed the highest flavonoid content (2859 mg GAE 100 g-1). The Trolox Equivalent Antioxidant Capacity (TEAC) analysis showed that MO husks obtained from Guerrero had the highest antioxidant capacity (224.45 μmol Trolox Equivalents (TE) g-1). The Oxygen Radical Absorbance Capacity (ORAC) test showed that MO flowers from Guerrero had the high- est antioxidant capacity (382 μmol (TE) g-1). The differences between MO from the two different regions reported in this attributed to factors such as soil type, climatic conditions and the growing region.

La Moringa oleifera (MO) es una especie arbórea nativa del sur del Himalaya, India, Bangladesh, Afganistán y Pakistán, utilizada comercialmente para producir té, forraje para animales y medicinas herbales. El objetivo del presente estudio fue determinar las características nutricionales de diferentes partes de la planta de MO provenientes de dos regiones de México (Estados de Guerrero y Sonora). Los análisis de composición proximal (lípidos, proteínas, cenizas y fibra) se realizaron en base a las metodologías establecidas por la Asociación de Químicos Analíticos Oficiales (AOAC), y la determinación de capacidad antioxidante y compuestos fenólicos se realizó por métodos espectrofotométricos. Los contenidos de proteínas (38.5%) y lípidos (42.2%) de las semillas de MO fueron los más altos en comparación con otras partes de la planta. Estos resultados fueron similares entre las dos regiones de México que fueron evaluadas. Las flores de MO de Guerrero mostraron el mayor contenido de fenoles y taninos (1908.71 mg Equivalentes de Ácido Gálico (EAG) 100 g-1, 220.27 mg Equivalentes de Catequina (EC) 100 g-1, respectivamente) mientras que las hojas MO de Sonora mostraron el mayor contenido de flavonoides (2859 mg EAG 100 g-1). El análisis de Capacidad Antioxidante Equivalente de Trolox (CAET) mostró que las cáscaras de MO obtenidas en la región de Guerrero tienen la mayor capacidad antioxidante (224.45 μmol Equivalentes de Trolox (ET) g-1). La prueba de Capacidad de Absorción de Radicales de Oxígeno (CARO) señaló que las flores de MO de Guerrero tienen la mayor capacidad antioxidante (382 μmol ET g-1). La diferencia entre el MO de las dos regiones diferentes reportadas en este estudio podría atribuirse a factores como el tipo de suelo, las condiciones climáticas y la región de siembra.

Referencias

Abdulkadir, A.R., D.D. Zawawi, and M.S. Jahan. 2016. Proximate and phytochemical screening of different parts of Moringa oleifera. Russ. Agric. Sci. 42, 34-36. Doi: 10.3103/S106836741601002X

Abdulkarim, S.M., K. Long, O.M. Lai, S.K.S. Muhammad, and H.M. Ghazali. 2005. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem. 93(2), 253-263. Doi: 10.1016/j.foodchem.2004.09.023

Aja, P.M., U.A. Ibiam, A.J. Uraku, O.U. Orji, C.E. Offor, and B.U. Nwali. 2013. Comparative proximate and mineral composition of Moringa oleifera leaf and seed. Glo. Adv. Res. J. Agric. Sci. 2, 137-141

Alhakmani, F., S. Kumar, and S.A. Khan. 2013. Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 3(8), 623-627. Doi: 10.1016/S2221-1691(13)60126-4

Ali, E.N. and Kemat, S.Z. 2017. Bioethanol produced from Moringa oleifera seeds husk. IOP Conf. Ser. Mater. Sci. Eng. 206, 012-019. Doi: 10.1088/1757-899X/206/1/012019

Amaglo, N.K., R.N. Bennett, R.B.L. Curto, E.A. Rosa, V.L. Turco, A. Giuffrida, A.L. Curto, F. Crea, and G.M. Timpo. 2010. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 122(4), 1047-1054. Doi: 10.1016/j.foodchem.2010.03.073

Anhwange, B.A., V.O. Ajibola, and S.J. Oniye. 2004. Chemical studies of the seeds of Moringa oleifera (Lam) and Detarium microcarpum (Guill and Sperr). J. Biol. Sci. 4(6), 711-715. Doi: 10.3923/jbs.2004.711.715

Anudeep, S., V.K. Prasanna, S.M. Adya, and C. Radha. 2016. Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects. Int. J. Biol. Macromol. 91, 656-662. Doi: 10.1016/j.ijbiomac.2016.06.013

Anwar, F. and M.I. Bhanger. 2003. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem. 51, 6558-6563. Doi: 10.1021/jf0209894

Anwar, F., A.I. Hussain, S. Iqbal, and M.I. Bhanger. 2007. Enhancement of the oxidative stability of some vegetable oils by blending with Moringa oleifera oil. Food Chem. 103(4), 1181-1191. Doi: 10.1016/j.foodchem.2006.10.023

Anwar, F., S.N. Zafar, and U. Rashid. 2006. Characterization of Moringa oleifera seed oil from drought and irrigated regions of Punjab, Pakistan. Grasas Aceites 57(2), 160-168. Doi: 10.3989/gya.2006.v57.i2.32

AOAC. 2000. Official methods of analysis of the Association of Official Analytical Chemists International: Vitamins and other nutrients. Gaithersburg, USA.

Aree, T. and S. Jongrungruangchok. 2016. Crystallographic evidence for β-cyclodextrin inclusion complexation facilitating the improvement of antioxidant activity of tea (+)-catechin and (–)-epicatechin. Carbohyd. Polym. 140, 362-373. Doi: 10.1016/j.carbpol.2015.12.066

Arise, A.K., R.O. Arise, M.O. Sanusi, O.T. Esan, and S.A. Oyeyinka. 2014. Effect of Moringa oleifera flower fortification on the nutritional quality and sensory properties of weaning food. Croat. J. Food Sci. Technol. 6(2), 65-71.

Bhutada, P.R., A.J. Jadhav, D.V. Pinjari, P.R. Nemade, and R.D. Jain. 2016. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind. Crop. Prod. 82, 74-80. Doi: 10.1016/j.indcrop.2015.12.004

Bonal, R.R., O.R. Rivera, and C.M. Bolívar. 2012. Moringa oleifera: una opción saludable para el bienestar. MediSan 16(10), 1596-1599.

Borrás-Linares, I., S. Fernández-Arroyoa, D. Arráez-Romana, P.A. Palmeros-Suárez, R. Del Val-Díaz, I. Andrade-Gonzáles, A. Fernández-Gutiérrez, J.F. Gómez-Leyva, and A. Segura-Carretero. 2015. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crop. Prod. 69, 385-394. Doi: 10.1016/j.indcrop.2015.02.053

Cabrera-Carrión, J.L., C. Jaramillo-Jaramillo, F. Dután-Torres, J. Cun-Carrión, P.A. García, and L. Rojas de Astudillo, L. 2017. Variación del contenido de alcaloides, fenoles, flavonoides y taninos en Moringa oleifera Lam. en función de su edad y altura. Bioagro 29(1), 53-60.

Chaparro, A.S.P., T.I.D. Aristizábal, and G.J.H. Gil. 2009. Composición y factores antinutricionales de las semillas del género Mucuna. Rev. Fac. Nac. Agron. Medellin 62(1), 4843-4853.

Cuellar-Núñez, M.L., I. Luzardo-Ocampo, R. Campos-Vega, M.A. Gallegos-Corona, E. Gonzáles de Mejía, and G. Loarca-Piña. 2018. Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivo AOM/DSS-induced colorectal carcinogenesis model. Food Res. Int. 105, 159-168. Doi: 10.1016/j.foodres.2017.11.004

Dhakar, R.C., S.D. Maurya, B.K. Pooniya, N. Bairwa, M. Gupta, and Sanwarmal. 2011. Moringa: the herbal gold to combat malnutrition. Chron. Young Sci. 2(3), 119-126.

Do Carmo, S.N., F.Q. Damásio, V.N. Alves, T.L. Marques, and N.M. Coelho. 2013. Direct determination of copper in gasoline by flame atomic absorption spectrometry after sorption and preconcentration on Moringa oleifera husks. Microchem. J. 110, 320-325. Doi: 10.1016/j.microc.2013.04.010

Fahey, J.W. 2005. Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Trees for Life Journal 1, 1-24.

Faizi, S., B.S. Siddiqui, R. Saleem, K. Aftab, F. Shaheen, and A.H. Gilani. 1998. Hypotensive constituents from the pods of Moringa oleifera. Planta Medica 64(3), 225-228. Doi: 10.1055/s-2006-957414

FAO. 2003. Food energy - methods of analysis and conversion factors. FAO food and nutrition paper 77. FAO, Rome.

FAO/WHO. 2004. Codex Alimentarius Commission, XII, supplement 4. Joint FAO WHO food standards programme, Rome.

Fernandes, L., S. Casal, J.A. Pereira, J.A. Saraiva, and E. Ramalhosa. 2017. Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 60, 38-50. Doi: 10.1016/j.jfca.2017.03.017

Gidamis, A.B., J.T. Panga, S.V. Sarwatt, B.E. Chove, and N.B. Shayo. 2003. Nutrient and antinutrient contents in raw and cooked young leaves and immature pods of Moringa oleifera, Lam. Ecol. Food Nutr. 42(6), 399-411. Doi: 10.1080/03670240390268857

Gopalakrishnan, L., K. Doriya, and D.S. Kumar. 2016. Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness. 5(2), 49-56. Doi: 10.1016/j.fshw.2016.04.001

Gowrishankar, R., M. Kumar, V. Menon, D.S. Mangala, M. Saravanan, P. Magudapathy, B.K. Panigrahi, K.G.M. Nair, and K. Venkataramaniah. 2010. Trace Element Studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) using PIXE. Biol. Trace Elem. Res. 133, 357-363. Doi: 10.1007/s12011-009-8439-1

Gupta, S., R. Jain, S. Kachhwaha, and S.L. Kothari. 2018. Nutritional and medicinal applications of Moringa oleifera Lam. Review of current status and future possibilities. J. Herb Med. 11, 1-11. Doi: 10.1016/j.hermed.2017.07.003

Guzmán-Maldonado, S.H., A. Zamarripa-Colmenares, and L.G. Hernández-Duran. 2015. Calidad nutrimental y nutraceútica de hoja de moringa proveniente de árboles de diferente altura. Rev. Mexicana Cienc. Agríc. 6(2), 317-330. Doi: 10.29312/remexca.v6i2.691

Hagerman, A.E. and L.G. Butler. 1989. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 15, 1795-1810. Doi: 10.1007/BF01012267

Jonhson, D.E. 1998. Métodos multivariados aplicados al análisis de datos. Traslated to Spanish by Pérez-Castellanos, H. International Thomson Editores, Mexico City.

Lalas, S. and J. Tsaknis. 2002. Characterization of Moringa oleifera seed oil variety “Periyakulam 1”. J. Food Compos. Anal. 15(1), 65-77. Doi: 10.1006/jfca.2001.1042

Mabusela, S.P., T.T. Nkukwana, M. Mokoma, and V. Muchenje. 2018. Layer performance, fatty acid profile and the quality of eggs from hens supplemented with Moringa oleifera whole seed meal. S. Afr. J. Anim. Sci. 48(2), 234-243.

Macías de Costa, S., M.A. Montenegro, T. Arregui, M.I. Sánchez de Pinto, M.A. Nazareno, and B. López de Mishima. 2003. Caracterización de acelga fresca de Santiago del Estero (Argentina). Comparación del contenido de nutrientes en hoja y tallo. Evaluación de los carotenoides presentes. Ciênc. Technol. Aliment. 23(1), 33-37. Doi: 10.1590/S0101-20612003000100008

Makkar, H.P.S. and K. Becker. 1996. Nutrional value and antinutritional components of whole and ethanol extracted Moringa oleifera leaves. Anim. Feed Sci. Tech. 63(1-4), 211-228. Doi: 10.1016/S0377-8401(96)01023-1

Martín, C., A. Moure, G. Martín, E. Carrillo, H. Domínguez, and J.C. Parajó. 2010. Fractional characterization of Jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenergy 34(4), 533-538. Doi: 10.1016/j.biombioe.2009.12.019

Mercado-Mercado, G., R. Carrillo, A. Wall-Medrano, J.A. López-Díaz, and E. Álvarez-Parrilla. 2013. Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Nutr. Hosp. 28(1), 36-46. Doi: 10.3305/nh.2013.28.1.6298

Moyo, B., P.J. Masika, A. Hugo, and V. Muchenje. 2011. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 10(60), 12925- 12933. Doi: 10.5897/AJB10.1599

Núñez-Colín, C.A. and D. Escobedo-López. 2014. Caracterización de germoplasma vegetal: la piedra angular en el estudio de los recursos fitogenéticos. Acta Agricola y Pecuaria 1(1), 1-6.

Olagbemide, P.T. and P.C.N. Alikwe. 2014. Proximate analysis and chemical composition of raw and defatted Moringa oleifera kernel. Advances in Life Science and Technology 24, 92-99.

Ou, B., M. Hampsh-Woodill, and R. Prior. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 49(10), 4619-4626. Doi: 10.1021/jf010586o

Pakade, V., E. Cukrowska, and L. Chimuka. 2013. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. S. Afr. J. Sci. 109(3-4), 1-5. Doi: 10.1590/sajs.2013/1154

Prosky, L., N.G. Asp, T.F. Schweizer, J.W. DeVries, and I. Furda. 1998. Determination of insoluble, soluble, and total dietary fiber in foods and food products. J. Assoc. Off. Anal. Chem. 71(5), 1017-1023.

Raman, J.K., C.M. Alves, and E. Gnansounou. 2017. A review on moringa tree and vetiver grass-potential biorefinery feedstocks. Bioresour. Technol. 249, 1044-1051. Doi: 10.1016/j.biortech.2017.10.094

Rashid, U., A. Farooq, B.R. Moser, and G. Knothe. 2008. Moringa oleifera oil: a posible source of biodiesel. Bioresour. Technol. 99(17), 8175-8179. Doi: 10.1016/j.biortech.2008.03.066

Reyes, S.N., E. Spörndly, and I. Ledin. 2006. Effect of feeding different levels of foliage Moringa oleifera to creole dairy cows on intake digestibility milk production and composition. Livest. Prod. Sci. 101(1-3), 24-31. Doi: 10.1016/j.livprodsci.2005.09.010

Ropiak, H.M., A. Ramsay, and I. Mueller-Harvey. 2016. Condensed tannins in extracts from European medicinal plants and herbal products. J. Pharm. Biomed. Anal. 121, 225-231. Doi: 10.1016/j.jpba.2015.12.034

Sánchez-Machado, D.I., J. López-Cervantes, J. López-Hernández, and P. Paseiro-Losada. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85(3), 439-444.

Sánchez-Machado, D.I., J.A. Núñez-Gastélum, C. Reyes-Moreno, B. Ramírez-Wong, and J. López-Cervantes. 2010. Nutritional quality of edible parts of Moringa oleifera. Food Anal. Method. 3, 175-180. Doi: 10.1007/s12161-009-9106-z

Sáyago-Ayerdi, S.G. and I. Goñi. 2010. Hibiscus sabdariffa L: Fuente de fibra antioxidante. Arch. Latinoam. Nutr. 60(1), 79-84.

Sena, L.P., D.J. VanderJagt, C. Rivera, A.T.C. Tsin, I. Muhamadu, O. Mahamadou, M. Millson, A. Pastuszyn, and R.H. Glew. 1998. Analysis of nutritional components of eight famine foods of the Republic of Niger. Plant Food Hum. Nutr. 52, 17-30. Doi: 10.1023/A:1008010009170

Shi, Y., X. Wang, and A. Huang. 2018. Proteomic Analysis and food-grade enzymes of Moringa oleifera Lam. a Lam. flower. Int. J. Biol. Macromol. 115, 883-890. Doi: 10.1016/j.ijbiomac.2018.04.109

Singleton, V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144-158.

Tao-Bin, H., H. Yan-Ping, H. YeWei, W. Xuan-Jun, H. Jiang-Miao, and S. Jun. 2018. Structural elucidation and antioxidant activity of an arabinogalactan from the leaves of Moringa oleifera. Int. J. Biol. Macromol. 112, 126-133. Doi: 10.1016/j.ijbiomac.2018.01.110

Toro, M.J.J., H.A. Carballo, and R.L. Rocha. 2016. Corn flour fortified with Moringa oleifera leaves powder: alternative against hunger on vulnerable population. Revista de Ciencias 20(2), 77-86.

Titchenal, C.A. and J. Dobbs. 2005. Nutritional value of vegetables. pp. 21-23. In: Hui, Y.J. (ed.). Handbook of food science, technology, and engineering. Taylor & Francis Group, Florida, USA.

Vaknin, Y. and A. Mishal. 2017. The potential of the tropical “miracle tree” Moringa oleifera and its desert relative Moringa peregrina as edible seed-oil and protein crops under Mediterranean conditions. Sci. Hortic. 225, 431-437. Doi: 10.1016/j.scienta.2017.07.039

Van der Berg, R., G.R.M. Haenen, H. Van der Berg, and A. Bast. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66(4), 511-517. Doi: 10.1016/S0308-8146(99)00089-8

Velázquez-Zavala, M., I.E. Peón-Escalante, R. Zepeda-Bautista, and M.A. Jiménez-Arellanes. 2016. Moringa (Moringa oleifera Lam.): usos potenciales en la agricultura, industria y medicina. Rev. Chapingo Ser. Hortic. 22(2), 95-116. Doi: 10.5154/r.rchsh.2015.07.018

Warhurst, A.M., S.L. Raggett, G.L. McConnachie, S.J.T. Pollard, V. Chipofya, and G.A. Codd. 1997. Adsorption of the cyanobacterial hepatotoxin microcystin-LR by a low-cost activated carbon from the seed husks of the pan-tropical tree, Moringa oleifera. Sci. Total Environ. 207(2-3), 207-211. Doi: 10.1016/S0048-9697(97)00260-X

Zulueta, A., M.J. Esteve, and A. Frígola. 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 114(1), 310-316. Doi: 10.1016/j.foodchem.2008.09.033

Cómo citar

APA

Guzmán-Maldonado, S. H., López-Manzano, M. J., Madera-Santana, T. J., Núñez-Colín, C. A., Grijalva-Verdugo, C. P., Villa-Lerma, A. G. y Rodríguez-Núñez, J. R. (2020). Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agronomía Colombiana, 38(2), 287–297. https://doi.org/10.15446/agron.colomb.v38n2.82644

ACM

[1]
Guzmán-Maldonado, S.H., López-Manzano, M.J., Madera-Santana, T.J., Núñez-Colín, C.A., Grijalva-Verdugo, C.P., Villa-Lerma, A.G. y Rodríguez-Núñez, J.R. 2020. Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agronomía Colombiana. 38, 2 (may 2020), 287–297. DOI:https://doi.org/10.15446/agron.colomb.v38n2.82644.

ACS

(1)
Guzmán-Maldonado, S. H.; López-Manzano, M. J.; Madera-Santana, T. J.; Núñez-Colín, C. A.; Grijalva-Verdugo, C. P.; Villa-Lerma, A. G.; Rodríguez-Núñez, J. R. Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agron. Colomb. 2020, 38, 287-297.

ABNT

GUZMÁN-MALDONADO, S. H.; LÓPEZ-MANZANO, M. J.; MADERA-SANTANA, T. J.; NÚÑEZ-COLÍN, C. A.; GRIJALVA-VERDUGO, C. P.; VILLA-LERMA, A. G.; RODRÍGUEZ-NÚÑEZ, J. R. Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agronomía Colombiana, [S. l.], v. 38, n. 2, p. 287–297, 2020. DOI: 10.15446/agron.colomb.v38n2.82644. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/82644. Acesso em: 14 jul. 2024.

Chicago

Guzmán-Maldonado, Salvador Horacio, Marcela Josefina López-Manzano, Tomás Jesús Madera-Santana, Carlos Alberto Núñez-Colín, Claudia Patricia Grijalva-Verdugo, Alma Guadalupe Villa-Lerma, y Jesús Rubén Rodríguez-Núñez. 2020. «Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico». Agronomía Colombiana 38 (2):287-97. https://doi.org/10.15446/agron.colomb.v38n2.82644.

Harvard

Guzmán-Maldonado, S. H., López-Manzano, M. J., Madera-Santana, T. J., Núñez-Colín, C. A., Grijalva-Verdugo, C. P., Villa-Lerma, A. G. y Rodríguez-Núñez, J. R. (2020) «Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico», Agronomía Colombiana, 38(2), pp. 287–297. doi: 10.15446/agron.colomb.v38n2.82644.

IEEE

[1]
S. H. Guzmán-Maldonado, «Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico», Agron. Colomb., vol. 38, n.º 2, pp. 287–297, may 2020.

MLA

Guzmán-Maldonado, S. H., M. J. López-Manzano, T. J. Madera-Santana, C. A. Núñez-Colín, C. P. Grijalva-Verdugo, A. G. Villa-Lerma, y J. R. Rodríguez-Núñez. «Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico». Agronomía Colombiana, vol. 38, n.º 2, mayo de 2020, pp. 287-9, doi:10.15446/agron.colomb.v38n2.82644.

Turabian

Guzmán-Maldonado, Salvador Horacio, Marcela Josefina López-Manzano, Tomás Jesús Madera-Santana, Carlos Alberto Núñez-Colín, Claudia Patricia Grijalva-Verdugo, Alma Guadalupe Villa-Lerma, y Jesús Rubén Rodríguez-Núñez. «Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico». Agronomía Colombiana 38, no. 2 (mayo 1, 2020): 287–297. Accedido julio 14, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/82644.

Vancouver

1.
Guzmán-Maldonado SH, López-Manzano MJ, Madera-Santana TJ, Núñez-Colín CA, Grijalva-Verdugo CP, Villa-Lerma AG, Rodríguez-Núñez JR. Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agron. Colomb. [Internet]. 1 de mayo de 2020 [citado 14 de julio de 2024];38(2):287-9. Disponible en: https://revistas.unal.edu.co/index.php/agrocol/article/view/82644

Descargar cita

CrossRef Cited-by

CrossRef citations6

1. Raluca A. Mihai, Osmar S. Acurio Criollo, Jean P. Quishpe Nasimba, Erly J. Melo Heras, Dayana K. Galván Acaro, Pablo A. Landazuri Abarca, Larisa I. Florescu, Rodica D. Catana. (2022). Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam.. Toxics, 10(11), p.661. https://doi.org/10.3390/toxics10110661.

2. Joydeep Das, Rahul Saha, Harjeet Nath, Abhijit Mondal, Soma Nag. (2022). An eco-friendly removal of Cd(II) utilizing banana pseudo-fibre and Moringa bark as indigenous green adsorbent and modelling of adsorption by artificial neural network. Environmental Science and Pollution Research, 29(57), p.86528. https://doi.org/10.1007/s11356-022-21702-z.

3. François Mitterand Tsombou, Aishah Saeed Sulaiman Jemei Al Dhanhani, Shaher Bano Mirza, Belaid Youssouf, Fouad Lamghari Ridouane. (2024). Effect of harvest timing and plant parts on the nutritional and chemical profile of five potential fodder plants found in eastern coast of United Arab Emirates. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-62258-x.

4. Poonam Jaglan, Deepika Kaushik, Mukul Kumar, Ashwani Kumar, Jasjit Kaur, Emel Oz, Charles Brennan, Charalampos Proestos, Margaret Brennan, Naushad Ahmad, Tahra Elobeid, Fatih Oz. (2023). Structural, thermal, techno‐functional and chemical characterization using Fourier Transform Infrared Spectroscopy, Gas‐Chromatography‐Mass Spectrophotometry, Thermogravimetric Analyser, Field Emission Scanning Electron Microscopy and Energy‐Dispersive X‐Ray Spectrometer of Moringa Oleifera flower powder. International Journal of Food Science & Technology, 58(11), p.5992. https://doi.org/10.1111/ijfs.16707.

5. Claudia Grijalva-Verdugo, Jesús Rubén Rodríguez-Núñez, Carlos Alberto Núñez-Colin, César Leobardo Aguirre-Mancilla, Diana Montoya-Anaya, Juan Manuel Villareal-Fuentes, Rosendo Balois-Morales, María Guadalupe Rodríguez-Carrillo. (2022). Total polyphenolic, antioxidants, and cytotoxic activity of infusions from soursop (Annona muricata) leaves from two Mexican regions. Agronomía Colombiana, 40(2), p.300. https://doi.org/10.15446/agron.colomb.v40n2.102621.

6. Antonio Montes, Diego Valor, Clara Pereyra, Enrique Martínez de la Ossa. (2023). Generation of Spherical Microparticles of Moringa Leaves through a Supercritical Antisolvent Extraction Process. Sustainable Chemistry, 4(2), p.143. https://doi.org/10.3390/suschem4020011.

Dimensions

PlumX

Visitas a la página del resumen del artículo

809

Descargas

Los datos de descargas todavía no están disponibles.