Effect of selected bacteria from biogas sludge on the growth and nutrition of upland rice
Efecto de las bacterias seleccionadas de los lodos de biogás en el crecimiento y la nutrición del arroz de tierras altas
DOI:
https://doi.org/10.15446/agron.colomb.v39n3.97583Palabras clave:
acidic soil, crop growth rate, dosage, sludge potential (en)suelo ácido, tasa de crecimiento de cultivos, dosis, potencial de lodo (es)
Descargas
This study evaluated the influence of selected superior bacterial isolates (SBI), biogas sludge, and their interactions on growth and nutrient uptake of upland rice grown in Ultisols. We used a randomized block design with two factors and seven replicates from October 2020 to April 2021. The first factor used selected SBI (B0 = untreated, B1 = nitrogen-fixing bacteria isolate (N3), B2 = phosphate solubilizing bacteria isolate (P7), B3 = isolate combination (N3+P7)). The second factor was the dosage of biogas sludge (S0 = untreated, S1 = 157.5; S2 = 315; S3 = 630 ml/polybag). The parameters were determined by ANOVA and followed by Duncan’s multiple range test at Р<0.05. The results showed that the isolate P7 significantly increased the N uptake by 20.77% and crop growth rate (CGR) of upland rice 2.81 times. Biogas sludge doses from 315 to 630 ml/polybag significantly increased plant height, uptake of N and P, total fresh and dry weight, and CGR of upland rice. The interaction between N3 and biogas sludge dosage of 630 ml/polybag significantly increased the CGR of upland rice. The application of isolates N3 and P7 and their combination with biogas sludge of 630 ml/polybag has the potential to increase the CGR of upland rice in acidic soils.
El presente estudio evaluó la influencia de aislamientos bacterianos superiores seleccionados (ABS), lodos de biogás y sus interacciones sobre el crecimiento y la absorción de nutrientes del arroz de tierras altas cultivado en ultisoles. Se utilizó un diseño de bloques al azar con dos factores y siete repeticiones desde octubre de 2020 hasta abril de 2021. El primer factor utilizado seleccionó ABS (B0 = sin tratamiento, B1 = aislamiento de bacterias fijadoras de nitrógeno (N3), B2 = aislamiento de bacterias solubilizadoras de fosfato (P7), B3 = combinación de aislamientos (N3+P7)). El segundo factor fue la dosificación del lodo de biogás (S0 = sin tratamiento, S1 = 157.5; S2 = 315; S3 = 630 ml/polybag). Los parámetros fueron determinados por análisis de varianza y seguidos de la prueba de rangos múltiples de Duncan a Р<0.05. Los resultados mostraron que el aislamiento P7 aumentó significativamente la absorción de N en un 20.77% y la tasa de crecimiento del cultivo (TCC) de arroz de tierras altas 2.81 veces. Las dosis de lodos de biogás de 315 a 630 ml/polybag aumentaron significativamente la altura de la planta, la absorción de N y P, el peso fresco y seco total y el TCC de arroz de tierras altas. La interacción de N3 con la dosis de lodos de biogás de 630 ml/polybag aumentó significativamente la TCC del arroz de tierras altas. La aplicación de los aislamientos N3 y P7 y su combinación con lodos de biogás de 630 ml/polybag tiene el potencial de aumentar la TCC de arroz de tierras altas en suelos ácidos.
Referencias
Adela, B. N., Muzzammil, N., Loh, S. K., & Choo, Y. M. (2014). Characteristics of palm oil mill effluent (POME) in an anaerobic biogas digester. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 16(1), 225–231.
Alvionita, F., Faizal, M., Komariah, L. N., & Said, M. (2019). Biogas production from palm oil mill effluent with indigenous bacteria. International Journal on Advanced Science, Engineering and Information Technology, 9(6), 2060–2066. https://doi.org/10.18517/ijaseit.9.6.10462
Ambrosini, A., Stefanski, T., Lisboa, B. B., Beneduzi, A., Vargas, L. K., & Passaglia, L. M. P. (2016). Diazotrophic bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser. Annals of Applied Biology, 168(1), 93–110. https://doi.org/10.1111/aab.12245
Balai Penelitian Tanah. (2009). Petunjuk teknis 2: Analisis kimia tanah, tanaman, air, dan pupuk. Kementerian Pertanian.
Bertramson, B. R. (1942). Phosphorus analysis of plant material. Plant Physiology, 17(3), 447–454. https://doi.org/10.1104%2Fpp.17.3.447
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, Article 66. https://doi.org/10.1186/1475-2859-13-66
Carvajal-Muñoz, J. S., & Carmona-Garcia, C. E. (2012). Benefits and limitations of biofertilization in agricultural practices. Livestock Research for Rural Development, 24(3), Article 43.
Choorit, W., & Wisarnwan, P. (2007). Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electronic Journal of Biotechnology, 10(3), 376–385. https://doi.org/10.2225/vol10-issue3-fulltext-7
FAO. (1977). FAO soils Bulletin 40 - China: recycling of organic wastes in agriculture. Food and Agriculture Organization of the United Nations. https://www.fao.org/publications/card/en/c/34d03d32-bd9f-5d08-aa08-ed2499349eb1/
Ferrara, F. I. S., Oliveira, Z. M., Gonzales, H. H. S., Floh, E. I. S., & Barbosa, H. R. (2012). Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant and Soil, 353, 409–417. https://doi.org/10.1007/s11104-011-1042-1
IBM. (2011). IBM SPSS statistics for Windows version 20.0. International Business Machines Corporation.
Kang, S. M., Radhakrishnan, R., You, Y. H., Joo, G. J., Lee, I. J., Lee, K. E., & Kim, J. H. (2014). Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian Journal of Microbiology, 54, 427–433. https://doi.org/10.1007/s12088-014-0476-6
Kementerian Pertanian. (2017). Produksi tanaman pangan di Indonesia.
Khan, M. A., Asaf, S., Khan, A. L., Jan, R., Kang, S. M., Kim, K. M., & Lee, I. J. (2020). Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiology, 20, Article 175. https://doi.org/10.1186/s12866-020-01822-7
Kirchhof, G., Reis, V. M., Baldani, J. I., Eckert, B., Döbereiner, J., & Hartmann, A. (1997). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. In J. K. Ladha, F. J. de Brujin, & K. A. Malik (Eds.), Opportunities for biological nitrogen fixation in rice and other non-legumes (pp. 45–55). Springer. https://doi.org/10.1007/978-94-011-7113-7_6
Liaquat, R., Jamal, A., Tauseef, I., Qureshi, Z., Farooq, U., Imran, M., & Ali, M. I. (2017). Characterizing bacterial consortia from an anaerobic digester treating organic waste for biogas production. Polish Journal of Environmental Studies, 26(2), 709–716. https://doi.org/10.15244/pjoes/59332
Lim, J. W., Ge, T., & Tong, Y. W. (2018). Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation. Waste Management, 71, 334–341. https://doi.org/10.1016/j.wasman.2017.10.007
Lubis, F. S., Irvan, Anwar, D., Harahap, B. A., & Trisakti, B. (2014). Kajian awal pembuatan pupuk cair organik dari effluent pengolahan lanjut limbah cair pabrik kelapa sawit (LCPKS) skala pilot. Jurnal Teknik Kimia USU, 3(1), 32–37. https://doi.org/10.32734/jtk.v3i1.1499
Meena, V. S., Bahaur, I., Maurya, B. R., Kumar, A., Meena, R. K., Meena, S. K., & Verma, J. P. (2016). Potassium-solubilizing microorganism in evergreen agriculture: an overview. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 1–20). Springer. https://doi.org/10.1007/978-81-322-2776-2_1
Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences, 12(3), 242–257. https://doi.org/10.1002/elsc.201100085
Mustamu, N. E., Nasution, Z., Irvan, & Sembiring, M. (2021a). Isolation of phosphate solubilizing bacteria from anaerobic digestion sludge of palm oil mill effluent on ultisols. Plant Cell Biotechnology and Molecular Biology, 22(35–36), 220–230.
Mustamu, N. E., Nasution, Z., Irvan, & Sembiring, M. (2021b). Potential and phylogenetic of superior bacterial isolates in biogas sludge from anaerobic digestion of palm oil mill effluent. IOP Conference Series: Earth and Environmental Science, 913, Article 012065.
Mustamu, N. E., & Triyanto, Y. (2020). Nature of chemical and biological sludge biogas liquid waste oil palm. International Journal of Innovative Science and Research Technology, 5(2), 955–957.
Ndubuisi-Nnaji, U. U., Ofon, U. A., Ekponne, N. I., & Offiong, N. A. O. (2020). Improved biofertilizer properties of digestate from codigestion of brewer’s spent grain and palm oil mill effluent by manure supplementation. Sustainable Environment Research, 30, Article 14.
Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362–370.
Pusat Penelitian Tanah dan Agroklimat. (2000). Atlas peta tanah Indonesia. Jakarta Puslittanak.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, Article 587. https://doi.org/10.1186/2193-1801-2-587
Shon, T. K., Haryanto, T. A. D., & Yoshida, T. (1997). Dry matter production and utilization of solar energy in one year old Bupleurum falcatum. Journal of the Faculty of Agriculture Kyushu University, 41(3–4), 133–139.
Siswanti, D. U., & Lestari, M. F. (2019). Growth rate and capsaicin level of curly red chili (Capsicum annum L.) on biofertilizer and biogas sludge application. Jurnal Biodjati, 4(1), 126–137. https://doi.org/10.15575/biodjati.v4i1.4216
Suksong, W., Kongjan, P., Prasertsan, P., Imai, T., & O-Thong, S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology, 214, 166–174. https://doi.org/10.1016/j.biortech.2016.04.077
Sutarta, E. S., Winarna, P. L., & Sufianto, T. (2000, June 13–14). Aplikasi limbah cair pabrik kelapa sawit pada perkebunan kelapa sawit [Conference presentation]. Pertemuan Kelapa Sawit II, Medan, Indonesia.
Tepsour, M., Usmanbaha, N., Rattanaya, T., Jariyaboon, R., OThong, S., Prasertsan, P., & Kongjan, P. (2019). Biogas production from oil palm empty fruit bunches and palm oil decanter cake using solid-state anaerobic co-digestion. Energies, 12(22), Article 4368. https://doi.org/10.3390/en12224368
Urra, J., Alkorta, I., Mijangos, I., Epelde, L., & Garbisu, C. (2019). Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Science of the Total Environment, 647, 1410–1420. https://doi.org/10.1016/j.scitotenv.2018.08.092
Youssef, M. A., & Eissa, M. A. (2017). Comparison between organic and inorganic nutrition for tomato. Journal of Plant Nutrition, 40(13), 1900–1907. https://doi.org/10.1080/01904167.2016.1270309
Zhang, A. M., Zhao, G. Y., Gao, T. G., Wang, W., Li, J., Zhang, S. F., & Zhu, B. C. (2013). Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. African Journal of Microbiology Research, 7(1), 41–47. https://doi.org/10.5897/AJMR12.1485
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de ColombiaSe autoriza la reproducción y citación del material que aparece en la revista, siempre y cuando se indique de manera explícita: nombre de la revista, nombre del autor(es), año, volumen, número y páginas del artículo fuente. Las ideas y afirmaciones consignadas por los autores están bajo su responsabilidad y no interpretan necesariamente las opiniones y políticas de la Universidad Nacional de Colombia. La mención de productos o firmas comerciales en la revista no implica una recomendación o apoyo por parte de la Universidad ni de la Facultad; el uso de tales productos debe ceñirse a las recomendaciones de las etiquetas.
La licencia Creative Commons utilizada por Agronomía Colombiana es la siguiente: Reconocimiento – NoComercial – CompartirIgual (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/
Los autores que publican sus artículos en Agronomía Colombiana ceden de manera indefinida, todos los derechos patrimoniales, es decir, transformación, reproducción, comunicación pública, y distribución, y son otorgados sin ninguna limitación en cuanto a territorio se refiere al Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia