Fermentación de xilosa de una cepa de Saccharomyces cerevisiae mejorada a través de ingeniería evolutiva
Xylose fermentation of a Saccharomyces cerevisiae strain improved through evolutionary engineering
DOI:
https://doi.org/10.15446/rev.colomb.biote.v26n1.110533Palabras clave:
adaptación, fermentación, levadura, mutagénesis, pentosas (es)adaptation, fermentation, mutagenesis, pentoses, yeast (en)
Descargas
La ingeniería evolutiva busca el mejoramiento de microorganismos con aplicaciones industriales con el uso de técnicas que aceleran su adaptación a condiciones específicas. Saccharomyces cerevisiae tiene una capacidad biotecnológica superior; sin embargo, no es capaz de asimilar eficientemente pentosas provenientes de la biomasa lignocelulósica. En este trabajo, se aplicaron por separado tres metodologías de ingeniería evolutiva: Evolución Adaptativa en Laboratorio (EAL), mutagénesis y genome shuffling, en la cepa S. cerevisiae TMB3001. El consumo de xilosa de las cepas obtenidas fue muy superior al de la cepa parental TMB3001 (75% vs 5%) en condiciones aerobias y como única fuente de carbono. Cuando se evaluaron diferentes relaciones de xilosa y glucosa en condiciones anaerobias, se observó mayor crecimiento y consumo de los sustratos. El mayor rendimiento de biomasa se observó en la cepa A-300 (0,38 g/g) en una relación 75/25 de xilosa/glucosa. Todas las cepas mejoradas tuvieron un comportamiento fermentativo en glucosa que alcanzó rendimientos de etanol entre el 42 y 46%. En presencia de xilosa, los mayores rendimientos se alcanzaron en la relación 75/25 por las cepas A-300 y H-12 (38 y 40%, respectivamente). La combinación de técnicas de ingeniería evolutiva permitió la obtención de una levadura consumidora de xilosa con un fenotipo fermentativo muy prometedor para el aprovechamiento de la biomasa lignocelulósica.
Evolutionary engineering seeks the improvement of microorganisms with industrial applications, with the use of techniques that accelerate their adaptation to specific conditions. Saccharomyces cerevisiae has superior biotechnological capacity; however, it is not able to efficiently assimilate pentoses from lignocellulosic biomass. In this work, three evolutionary engineering methodologies were applied separately: adaptative laboratory evolution (ALE), mutagenesis, and genome shuffling, in the strain S. cerevisiae TMB3001. The xylose consumption of the improved strains was much higher than that of the parental strain TMB3001 (75% vs 5%) under aerobic conditions and xylose as only carbon source. When different ratios of xylose and glucose were evaluated under microaerophilic conditions, higher growth and consumption of substrates was observed. The highest biomass yield was observed in strain A-300 (0.38 g/g) with a ratio xylose/glucose of 75/25. All the improved strains had a fermentative behavior in glucose that reached ethanol yields between 42 and 46%. In presence of xylose, the highest yields were reached in 75/25 ratio by A-300 and H-12 strains (38 and 40%, respectively). The combination of techniques that increase genetic diversity and sequential adaptation in the laboratory allowed obtaining a xylose-consuming yeast with a very promising fermentative phenotype for the use of lignocellulosic biomass.
Referencias
Broda, M., Yelle, D. J., & Serwańska, K. (2022). Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules, 27(24). https://doi.org/10.3390/molecules27248717
Eliasson, A., Christensson, C., Wahlbom, C. F., & Hahn-Hägerdal, B. (2000). Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol, 66(8), 3381-3386. https://doi.org/10.1128/AEM.66.8.3381-3386.2000
Hou, X., & Yao, S. (2012). Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biotechnol, 93(6), 2591-2601. https://doi.org/10.1007/s00253-011-3693-5
Jin, Y. S., Ni, H., Laplaza, J. M., & Jeffries, T. W. (2003). Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol, 69(1), 495-503. https://doi.org/10.1128/AEM.69.1.495-503.2003
Johansson, B., & Hahn-Hägerdal, B. (2002). The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res, 2(3), 277-282. https://doi.org/10.1111/j.1567-1364.2002.tb00095.x
Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 73(5), 1039-1046. https://doi.org/10.1007/s00253-006-0575-3
Khattab, S. M., Saimura, M., & Kodaki, T. (2013). Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol, 165(3-4), 153-156. https://doi.org/10.1016/j.jbiotec.2013.03.009
Kinsler, G., Geiler-Samerotte, K., & Petrov, D. A. (2020). Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. Elife, 9. https://doi.org/10.7554/eLife.61271
Krahulec, S., Klimacek, M., & Nidetzky, B. (2012). Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol, 158(4), 192-202. https://doi.org/10.1016/j.jbiotec.2011.08.026
Lopes, D. D., Rosa, C. A., Hector, R. E., Dien, B. S., Mertens, J. A., & Ayub, M. A. Z. (2017). Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. J Ind Microbiol Biotechnol, 44(11), 1575-1588. https://doi.org/10.1007/s10295-017-1979-z
Matsushika, A., & Sawayama, S. (2011). Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Enzyme Microb Technol, 48(6-7), 466-471. https://doi.org/10.1016/j.enzmictec.2011.02.002
Mavrommati, M., Daskalaki, A., Papanikolaou, S., & Aggelis, G. (2022). Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv, 54, 107795. https://doi.org/10.1016/j.biotechadv.2021.107795
Ochoa-Chacón, A., Martinez, A., Poggi-Varaldo, H. M., Villa-Tanaca, L., Ramos-Valdivia, A. C., & Ponce-Noyola, T. (2022). Xylose Metabolism in Bioethanol Production: Saccharomyces cerevisiae vs Non-Saccharomyces Yeasts. BioEnergy Research, 15(2), 905-923. https://doi.org/10.1007/s12155-021-10340-x
Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA by SDS solubilization and phenol extraction. Cold Spring Harb Protoc, 2010(6), pdb. prot5438. https://doi.org/10.1101/pdb.prot5438
Ruchala, J., Kurylenko, O. O., Dmytruk, K. V., & Sibirny, A. A. (2020). Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol, 47(1), 109-132. https://doi.org/10.1007/s10295-019-02242-x
Sarkar, P., Mukherjee, M., Goswami, G., & Das, D. (2020). Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose. J Ind Microbiol Biotechnol, 47(3), 329-341. https://doi.org/10.1007/s10295-020-02270-y
Sato, T. K., Tremaine, M., Parreiras, L. S., Hebert, A. S., Myers, K. S., Higbee, A. J., Landick, R. (2016). Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae. PLoS Genet, 12(10), e1006372. https://doi.org/10.1371/journal.pgen.1006372
Saxena, A., & Sitaraman, R. (2016). Osmoregulation in Saccharomyces cerevisiae via mechanisms other than the high-osmolarity glycerol pathway. Microbiology (Reading), 162(9), 1511-1526. https://doi.org/10.1099/mic.0.000360
Singhvi, M. S., & Gokhale, D. V. (2019). Lignocellulosic biomass: Hurdles and challenges in its valorization. Appl Microbiol Biotechnol, 103(23-24), 9305-9320. https://doi.org/10.1007/s00253-019-10212-7
Teste, M. A., Duquenne, M., François, J. M., & Parrou, J. L. (2009). Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol, 10, 99. https://doi.org/10.1186/1471-2199-10-99
Westman, J. O., Bonander, N., Taherzadeh, M. J., & Franzén, C. J. (2014). Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules. Biotechnol Biofuels, 7, 102. https://doi.org/10.1186/1754-6834-7-102
Winston, F. (2008). EMS and UV mutagenesis in yeast. Curr Protoc Mol Biol, Chapter 13, Unit 13.13B. https://doi.org/10.1002/0471142727.mb1303bs82
Yin, H., Ma, Y., Deng, Y., Xu, Z., Liu, J., Zhao, J., . . . Chang, Z. (2016). Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J Microbiol Methods, 127, 188-192. https://doi.org/10.1016/j.mimet.2016.06.012
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).