Evaluación de la producción de ácido láctico a partir de un clúster de microorganismos nativos de una biorrefinería colombiana
Evaluation of lactic acid production from a cluster of vative microorganisms from a Colombian biorefinery
DOI:
https://doi.org/10.15446/rev.colomb.biote.v26n2.112366Palabras clave:
bacteria ácido láctica nativa, sacarosa de caña de azúcar, fermentación alcohólica, ácido láctico (es)Native lactic acid bacteria, sugarcane sucrose, alcoholic fermentation, lactic acid (en)
Descargas
En esta investigación un total de dieciséis cepas de bacterias ácido lácticas nativas fueron aisladas de una biorrefinería colombiana, provenientes de mostos de fermentación alcohólica (10) y mieles de caña de azúcar (6) Este clúster fue evaluado para la producción de ácido láctico en el medio de Man, Rogosa y Sharpe (MRS) (100 mL) en condiciones anaeróbicas, a 150 rpm y sin control de pH. Los efectos de la temperatura (37, 39.5, 42 °C) y del tiempo de fermentación (0, 8 y 24 horas) fueron evaluados sobre la producción del ácido láctico. Las bacterias acido lácticas (BAL) que lograron una producción del metabolito de interés, similar a la cepa patrón Lactobacillus delbrueckii ATCC 9649 fueron Pediococcus acidilactici y Pediococcus pentosaceus 1 con concentraciones de 12 gL-1 y parámetros cinéticos, 0.61 Yp/s y 0.51 gL-1h-1 en 24 horas a 42°C. Posteriormente, estas dos cepas fueron escaladas a nivel biorreactor en un medio rico en sacarosa a 42 °C, 150 rpm y NaOH 3N como agente para el control del pH en 6.8. La producción de ácido láctico (AL) y otros metabolitos fueron analizados durante las 44 horas de fermentación. Pediococcus acidilactici presentó el mejor desempeño fermentativo con una producción de 30 gL-1 ácido láctico, 0.66 Yp/s y 0.68 gL-1h-1. Adicionalmente se produjeron, bajo las condiciones evaluadas, ácido acético y etanol con rendimientos de 0.13 y 0.04 gg-1 respectivamente.
In this study, a total of sixteen strains of native lactic acid bacteria were isolated from a Colombian biorefinery, originating from alcoholic fermentation musts (10) and sugar cane molasses (6). This cluster was evaluated for lactic acid production in Man, Rogosa, and Sharpe (MRS) medium (100 mL) under anaerobic conditions, at 150 rpm, and without pH control. The effects of temperature (37, 39.5, 42 °C) and fermentation time (0, 8, and 24 hours) on lactic acid production were assessed. The lactic acid bacteria (LAB) strains that achieved metabolite production comparable to the reference strain Lactobacillus delbrueckii ATCC 9649 were Pediococcus acidilactici and Pediococcus pentosaceus 1, producing 12 gL-1 of lactic acid with kinetic parameters of 0.61 Yp/s and 0.51 gL-1h-1 at 42 °C in 24 hours. Subsequently, these two strains were scaled up to a bioreactor level in a sucrose rich medium at 42 °C, 150 rpm, with 3N NaOH as a pH control agent at 6.8. Lactic acid (LA) production and other metabolites were analyzed during 44 hours of fermentation. Pediococcus acidilactici exhibited the best fermentative performance with a production of 30 gL-1 of lactic acid, 0.66 Yp/s, and 0.68 gL-1h-1. Additionally, yields of 0.13 and 0.04 gg-1 of acetic acid and ethanol, respectively, were produced under the evaluated conditions.
Referencias
Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4), 286–301. https://doi.org/10.1016/j.jbiotec.2011.06.017
Abdel-Rahman, M. A., Xiao, Y., Tashiro, Y., Wang, Y., Zendo, T., Sakai, K., & Sonomoto, K. (2015). Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. Journal of Bioscience and Bioengineering, 119(2), 153–158. https://doi.org/10.1016/j.jbiosc.2014.07.007
Abedi, E., & Hashemi, S. M. B. (2020). Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon, 6(10), e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
Ahring, B. K., Traverso, J. J., Murali, N., & Srinivas, K. (2016). Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochemical Engineering Journal, 109, 162–169. https://doi.org/10.1016/j.bej.2016.01.012
Axelsson, L. (2004). Lactic acid bacteria: classification and physiology (Dekker Marcel, Ed.; 3rd ed., Vol. 139). Food Science and Technology.
Beckner, M., Ivey, M. L., & Phister, T. G. (2011). Microbial contamination of fuel ethanol fermentations. Letters in Applied Microbiology, 53(4), 387–394. https://doi.org/10.1111/j.1472-765X.2011.03124.x
Bintsis, T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4(4), 665–684. https://doi.org/10.3934/microbiol.2018.4.665
Camesasca, L., de Mattos, J. A., Vila, E., Cebreiros, F., & Lareo, C. (2021). Lactic acid production by Carnobacterium sp. isolated from a maritime Antarctic lake using eucalyptus enzymatic hydrolysate. Biotechnology Reports, 31, e00643. https://doi.org/10.1016/J.BTRE.2021.E00643
Costa, V. M., Basso, T. O., Angeloni, L. H. P., Oetterer, M., & Basso, L. C. (2008). Produções de ácido acético, etanol e dos isômeros óticos do ácido lático por linhagens de Lactobacillus isoladas de fermentações alcoólicas industriais. Ciência e Agrotecnologia, 32(2), 503–509. https://doi.org/10.1590/S1413-70542008000200025
Fu, W., & Mathews, A. P. (1999). Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochemical Engineering Journal, 3(3), 163–170. https://doi.org/10.1016/S1369-703X(99)00014-5
Gaspar, P., Carvalho, A. L., Vinga, S., Santos, H., & Neves, A. R. (2013). From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 31(6), 764–788. https://doi.org/10.1016/j.biotechadv.2013.03.011
Gómez, A. L. (2000). Producción de ácido láctico a partir de sacarosa de caña, una alternativa al uso de solventes [ Tesis de Maestría]. Universidad Católica de Manizales.
Gonzalez, C. F., & Kunka, B. S. (1986). Evidence for Plasmid Linkage of Raffinose Utilization and Associated α-Galactosidase and Sucrose Hydrolase Activity in Pediococcus pentosaceus. Applied and Environmental Microbiology, 51(1), 105–109. https://doi.org/10.1128/aem.51.1.105-109.1986
Hofvendahl, K., & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and Microbial Technology, 26(2–4), 87–107. https://doi.org/10.1016/S0141-0229(99)00155-6
Holzapfel, W. H., Bjorkroth, J. A., Dick, L. M. L., Vos, P. D., Garrity, G. M., Jones, D., & Whitman, W. B. (2009). Bergey’s Manual of Systematic Bacteriology. Springer.
Hu, J., Zhang, Z., Lin, Y., Zhao, S., Mei, Y., Liang, Y., & Peng, N. (2015). High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresource Technology, 182, 251–257. https://doi.org/10.1016/j.biortech.2015.02.008
John, R. P., Nampoothiri, K. M., & Pandey, A. (2006). Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 41(4), 759–763. https://doi.org/10.1016/j.procbio.2005.09.013
Li, H., & Pajor, A. M. (2002). Functional Characterization of CitM, the Mg2+-Citrate Transporter. Journal of Membrane Biology, 185(1), 9–16.
Liu, Y., Ashok, S., Seol, E., Bao, J., & Park, S. (2013). Comparison of three Pediococcus strains for lactic acid production from glucose in the presence of inhibitors generated by acid hydrolysis of lignocellulosic biomass. Biotechnology and Bioprocess Engineering, 18(6), 1192–1200. https://doi.org/10.1007/s12257-013-0360-y
Lunelli, B. H., Andrade, R. R., Atala, D. I. P., Wolf Maciel, M. R., Maugeri Filho, F., & Maciel Filho, R. (2010). Production of Lactic Acid from Sucrose: Strain Selection, Fermentation, and Kinetic Modeling. Applied Biochemistry and Biotechnology, 161(1–8), 227–237. https://doi.org/10.1007/s12010-009-8828-0
Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32(7), 1216–1236. https://doi.org/10.1016/j.biotechadv.2014.07.005
Narita, J., Nakahara, S., Fukuda, H., & Kondo, A. (2004). Efficient production of L-(+)-lactic acid from raw starch by Streptococcus bovis 148. Journal of Bioscience and Bioengineering, 97(6), 423–425. https://doi.org/10.1016/S1389-1723(04)70230-3
Nuryana, I., Andriani, A., Lisdiyanti, P., & Yopi. (2019). Analysis of organic acids produced by lactic acid bacteria. IOP Conference Series: Earth and Environmental Science, 251, 012054. https://doi.org/10.1088/1755-1315/251/1/012054
Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A. A., Marchant, R., & Banat, I. M. (2008). Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresource Technology, 99(13), 5951–5955. https://doi.org/10.1016/j.biortech.2007.10.039
Rein, P. (2012). Ingeniería de la caña de azúcar.
Serna Cock, L., & Rodríguez de Stouvenel, A. (2004). Jugo de caña verde como sustrato en la producción fermentativa por lotes de ácido láctico. Universidad Nacional de Colombia.
Serna Cock, L., & Rodríguez de Stouvenel, A. (2007). Producción económica de ácido láctico utilizando resíduos de cosecha y jugos de caña de azúcar (Saccharum officinarum L.). Agricultura Técnica, 67, 29–38.
Serrato, J. C., & Caicedo, L. A. (2005). Efecto de la concentración de material inerte en un biocatalizador de alginato de calcio con células inmovilizadas sobre la fermentación láctica . Revista Ingeniería e Investigación, 25(2), 78–82.
Sharma, V., & Mishra, H. N. (2014). Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT - Food Science and Technology, 59(2), 1123–1128. https://doi.org/10.1016/j.lwt.2014.05.039
Sossa Urrego, D. P., & Vanegas, M. C. (2009). Isolation and identification of contaminant Lactobacillus in a Colombian alcohol fermentation plant. Revista UDCA Actualidad & Divulgación Científica, 12(2), 163–172.
Vaidya, A. N., Pandey, R. A., Mudliar, S., Kumar, M. S., Chakrabarti, T., & Devotta, S. (2005). Production and Recovery of Lactic Acid for Polylactide—An Overview. Critical Reviews in Environmental Science and Technology, 35(5), 429–467. https://doi.org/10.1080/10643380590966181
Vijayakumar, J., Aravindan, R., & Viruthagiri, T. (2008). Recent Trends in the Production, Purification and Application of Lactic Acid. Chemical and Biochemical Engineering Quarterly, 22(2), 245–264.
Wang, Y., Tashiro, Y., & Sonomoto, K. (2015). Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1), 10–18. https://doi.org/10.1016/j.jbiosc.2014.06.003
Yun, J.-S., & Ryu, H.-W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry, 37(3), 235–240. https://doi.org/10.1016/S0032-9592(01)00205-9
Zalán, Z., Hudáček, J., Štětina, J., Chumchalová, J., & Halász, A. (2010). Production of organic acids by Lactobacillus strains in three different media. European Food Research and Technology, 230(3), 395–404. https://doi.org/10.1007/s00217-009-1179-9
Zhang, Y., & Vadlani, P. V. (2015). Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 119(6), 694–699. https://doi.org/10.1016/j.jbiosc.2014.10.027
Zhao, K., Qiao, Q., Chu, D., Gu, H., Dao, T. H., Zhang, J., & Bao, J. (2013). Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresource Technology, 135, 481–489. https://doi.org/10.1016/j.biortech.2012.09.063
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).