Publicado
Microbial Resistance as a Challenge: Therapeutic and Biotechnological Applications of Metabolites Produced by Bacteria of the Bacillus Genus. A descriptive review
La resistencia microbiana como desafío: aplicaciones terapéuticas y biotecnológicas de metabolitos producidos por bacterias del género Bacillus. Una revisión descriptiva
Palabras clave:
Bacillus, resistance, antibiotic, metabolites, antimicrobial (en)Bacillus, resistencia, antibiotico, antimicrobiano, Metabolitos (es)
Descargas
Prokaryotes were the first living forms to exist on Earth 3.5 billion years ago and are believed to be the last organisms to remain after the extinction of multicellular organisms. Bacteria have established a close relationship with humans, who host microbiomes, where these interactions can take several forms. Some are mutualistic, protecting the body from harmful species, producing beneficial metabolites, or stimulating the immune system, while others can cause harm. Antibiotics are the most studied and widely used microbial metabolites by humans. As antibiotic resistance has become a global concern, the search for microorganisms capable of producing novel antibiotics with clinical potential has become increasingly important. It has been reported that bacteria can biosynthesize two types of antimicrobial substances: bacteriocins, which are of ribosomal synthesis, and lipopeptides, which are of non-ribosomal synthesis. Members of the genus Bacillus can produce lipopeptides and other antimicrobial substances such as siderophores, lytic enzymes, toxins, and inducers of systemic plant resistance, making this genus of particular interest in the search for these metabolites. This work describes some species of the genus Bacillus that produce antimicrobial metabolites relevant to health and biotechnology.
Los procariotas fueron las primeras formas de vida que existieron en la Tierra hace 3500 millones de años y se cree que son los últimos organismos que quedaron tras la extinción de los organismos multicelulares. Las bacterias han establecido una estrecha relación con los seres humanos, que albergan el microbioma, donde estas interacciones pueden adoptar varias formas. Algunas son mutualistas, protegiendo al organismo de especies nocivas, produciendo metabolitos beneficiosos o estimulando el sistema inmunitario, mientras que otras pueden causar daño. Los antibióticos son los metabolitos microbianos más estudiados y utilizados por los seres humanos. Dado que la resistencia a los antibióticos se ha convertido en una preocupación mundial, la búsqueda de microorganismos capaces de producir nuevos antibióticos con potencial clínico ha cobrado cada vez más importancia. Se ha informado de que las bacterias pueden biosintetizar dos tipos de sustancias antimicrobianas: las bacteriocinas, que son de síntesis ribosómica, y los lipopéptidos, que son de síntesis no ribosómica. Los miembros del género Bacillus pueden producir lipopéptidos y otras sustancias antimicrobianas, como sideróforos, enzimas líticas, toxinas e inductores de resistencia sistémica en las plantas, lo que hace que este género sea de especial interés en la búsqueda de estos metabolitos. Este trabajo describe algunas especies del género Bacillus que producen metabolitos antimicrobianos relevantes para la salud y la biotecnología.
Referencias
Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus Bacteriocins. Fems Microbiology Reviews, 35(1), 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia: revisión sistemática. Infectio, 22(2), 110. https://doi.org/10.22354/in.v22i2.717
Bleam, W. F. (2012). Natural organic matter and humic colloids. En Elsevier eBooks (209-256). https://doi.org/10.1016/b978-0-12-415797-2.00006-6
Cochrane, S. A., & Vederas, J. C. (2014). Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Medicinal Research Reviews, 36(1), 4-31. https://doi.org/10.1002/med.21321
Danilova, I. V., & Шарипова, М. Р. (2020). The practical potential of bacilli and their enzymes for industrial production. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01782
Daubin, V., & Szöllősi, G. J. (2016). Horizontal gene transfer and the history of life. Cold Spring Harbor Perspectives in Biology, 8(4), a018036. https://doi.org/10.1101/cshperspect.a018036
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417-433. https://doi.org/10.1128/mmbr.00016-10
De Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. J. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLOS Medicine, 13(11), e1002184. https://doi.org/10.1371/journal.pmed.1002184
Denamur, E., & Matić, I. (2006). Evolution of mutation rates in bacteria. Molecular Microbiology, 60(4), 820-827. https://doi.org/10.1111/j.1365-2958.2006.05150.x
Discovery of DNA as the hereditary material | Learn Science at Scitable. (s. f.). https://www.nature.com/scitable/topicpage/discovery-of-dna-as-the-hereditary-material-340/
Elliot K. (2015). Antibiotics on the Farm: Agriculture’s role in drug resistance. Center For Global Development | Policy Paper Washington DC: Center for Global Development, 59: 1-36.
Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicina-lithuania, 47(3), 19. https://doi.org/10.3390/medicina47030019
Halami, P. M. (2019). Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microbial Pathogenesis, 128, 139-146. https://doi.org/10.1016/j.micpath.2018.12.044
Hashem, A., & Tabassum, B. (2019). Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Hershberg, R., & Petrov, D. A. (2010). Evidence that mutation is universally biased towards AT in bacteria. PLOS Genetics, 6(9), e1001115. https://doi.org/10.1371/journal.pgen.1001115
Hogan, D. A., & Kolter, R. (2002). Why are bacteria refractory to antimicrobials? Current Opinion in Microbiology, 5(5), 472-477. https://doi.org/10.1016/s1369-5274(02)00357-0
Ikuta, K. S., Swetschinski, L. R., Aguilar, G. R., Sharara, F., Meštrović, T., Gray, A. P., Weaver, N. D., Wool, E., Han, C., Hayoon, A. G., Aali, A., Abate, S. M., Abbasi‐Kangevari, M., Abbasi-Kangevari, Z., Abd‐Elsalam, S., Abebe, G., Abedi, A., Abhari, A. P., Abidi, H., Naghavi, M. (2022). Global mortality associated with 33 bacterial pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 400(10369), 2221-2248.
Jha S, Kumar C, Modi H. Microbial chitinases: Manifestation and prospective. En: Garg N,
Aeron A, editor(s). Microbes in Process. Portland, ME, USA.: Nova Science
publisher. 2014. p. 151-162.
Johnson, E. T., Bowman, M. J., & Dunlap, C. A. (2020). Brevibacillus fortis NRS-1210 produces edeines that inhibit the in vitro growth of conidia and chlamydospores of the onion pathogen Fusarium oxysporum F. sp. cepae. Antonie van Leeuwenhoek, 113(7), 973-987. https://doi.org/10.1007/s10482-020-01404-7
Kaman, W. E., Nazmi, K., Voskamp-Visser, A. I., & Bikker, F. J. (2022). Gramicidin A is hydrolyzed by a D ‐stereospecific peptidase produced by Bacillus anthracis. Environmental Microbiology Reports, 14(4), 570-576. https://doi.org/10.1111/1758-2229.13069
Kovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27(8), 724-725. https://doi.org/10.1016/j.tim.2019.03.008
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B. E., . . . Danchin, A. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390(6657), 249-256. https://doi.org/10.1038/36786
Méthot, P. (2015). Bacterial Transformation and the origins of epidemics in the Interwar Period: The epidemiological significance of Fred Griffith’s “Transforming Experiment”. Journal of the History of Biology, 49(2), 311-358. https://doi.org/10.1007/s10739-015-9415-6
Millán, Á. S., & MacLean, R. C. (2017). Fitness costs of plasmids: A limit to plasmid transmission. Microbiology spectrum, 5(5). https://doi.org/10.1128/microbiolspec.mtbp-0016-2017
Mohamed, E., Farag, A. G. A., & Youssef, S. A. (2018). Phosphate solubilization by Bacillus subtilis and Serratia marcescens; isolated from tomato plant rhizosphere. Journal of Environmental Protection, 09(03), 266-277. https://doi.org/10.4236/jep.2018.93018
Pournejati, R., Gust, R., & Karbalaei‐Heidari, H. R. (2019). An aminoglycoside antibacterial substance, S-137-R, produced by newly isolated Bacillus velezensis strain RP137 from the Persian Gulf. Current Microbiology, 76(9), 1028-1037. https://doi.org/10.1007/s00284-019-01715-7
Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, Ecology, and Application. Annual Review of Microbiology, 56(1), 117-137. https://doi.org/10.1146/annurev.micro.56.012302.161024
Rukmini, M., Sahoo, D., Dalei, J., & Ray, R. (2015). Production, purification and characterization of bacitracin from Bacillus subtilis. The Pharma Innovation Journal, 3, 77-82.
Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2015). Microbial siderophores and their Potential applications: a review. Environmental Science and Pollution Research, 23(5), 3984-3999. https://doi.org/10.1007/s11356-015-4294-0
Sansinenea, E. (2012). Discovery and description of Bacillus thuringiensis. En Springer eBooks (pp. 3-18). https://doi.org/10.1007/978-94-007-3021-2_1
Setlow, P. (2014). Spore resistance properties. Microbiology spectrum, 2(5). https://doi.org/10.1128/microbiolspec.tbs-0003-2012
Sidek, N. L. M., Halim, M., Tan, J. S., Abbasiliasi, S., Mustafa, S., & Ariff, A. (2018). Stability of Bacteriocin-Like inhibitory substance (BLIS) produced by Pediococcus acidilacticiKP10 at different extreme conditions. BioMed Research International, 2018, 1-11. https://doi.org/10.1155/2018/5973484
Stoica, R., Moscovici, M., Tomulescu, C., Cășărică, A., Băbeanu, N., Popa, O., & Kahraman, H. A. (2019). Antimicrobial compounds of the genus Bacillus: a review. Romanian Biotechnological Letters, 24(6), 1111-1119. https://doi.org/10.25083/rbl/24.6/1111.1119
Sumi, C. D., Yang, B. W., Yeo, I., & Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 93-103. https://doi.org/10.1139/cjm-2014-0613
Tan, I. S., & Ramamurthi, K. S. (2013). Spore formation in Bacillus subtilis. Environmental Microbiology Reports, 6(3), 212-225. https://doi.org/10.1111/1758-2229.12130
Tejera-Hernández, B., Rojas-Badía, M. M., & Heydrich-Pérez, M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC. Ciencias Biológicas, 42(3), 131-138.
Van Boeckel, T., Brower, C., Gilbert, M., Grenfell, B. B., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649-5654. https://doi.org/10.1073/pnas.1503141112
World Health Organization: WHO. (2017). The world is running out of antibiotics, WHO report confirms. World Health Organization. From https://www.who.int/news/item/20-09-2017-the-world-is-running-out-of-antibiotics-who-report-confirms
Zavaliev, R., Mohan, R., Chen, T., & Dong, X. (2020). Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell, 182(5), 1093-1108.e18. https://doi.org/10.1016/j.cell.2020.07.016
Zeigler, D. R., & Perkins, J. B. (2021). The genus Bacillus. En CRC Press eBooks (pp. 249-278). https://doi.org/10.1201/9781003099277-24
Zhu, J., Hu, C., Zeng, Z., Deng, X., Zeng, L., Xie, S., Yuan, F., Jin, Y., Alezra, V., & Wan, Y. (2021). Polymyxin B-inspired non-hemolytic tyrocidine A analogues with significantly enhanced activity against gram-negative bacteria: How cationicity impacts cell specificity and antibacterial mechanism. European Journal of Medicinal Chemistry, 221, 113488. https://doi.org/10.1016/j.ejmech.2021.113488
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).





