From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases
Del Campo al Laboratorio: Biosensores Electroquímicos de Peroxidasas de Plantas Colombianas
DOI:
https://doi.org/10.15446/rev.colomb.biote.v26n2.113613Palabras clave:
peroxidasa de plantas colombianas, biodetección, biosensores electroquímicos, electrodos serigrafiados, peroxidases, biosensing, electrochemical biosensors, biocatalyst (en)Descargas
The peroxidases are a class of enzymes found in various species of Colombian tropical plants. These enzymes belong to the larger group of peroxidases, which are heme-containing proteins involved in catalysing a wide range of reactions in living organisms. Peroxidases have emerged as promising biocatalysts with versatile biotechnological applications. This paper aims to provide a detailed analysis of peroxidases in Colombian tropical plants and their potential in electrochemical sensing. The review begins by elucidating the structural and functional characteristics of peroxidases in plants, exploring their classification, and highlighting their catalytic mechanisms. It then delves into the various substrate specificity and affinity of plant peroxidases and its comparison with other peroxidases. Furthermore, the diverse electrochemical techniques relevant to biosensing and their applications in biosensor development are thoroughly examined. The challenges and prospects of utilizing Colombian plant peroxidases in biosensing applications are critically evaluated.
In summary, this study highlights the significance of peroxidases in plants as valuable bioanalytical tool. Their multifaceted applications in environmental, agricultural, food, and pharmaceutical bioanalysis sectors make them indispensable in addressing contemporary challenges. The insights provided herein serve as a foundation for future research endeavours aimed at harnessing the full potential of Colombian tropical plant peroxidases for the construction of electrochemical biosensors.
Las peroxidasas son una clase de enzimas presentes en diversas especies de plantas tropicales colombianas. Estas enzimas pertenecen al grupo más grande de peroxidasas, que son proteínas que contienen el grupo hemo y catalizan una amplia gama de reacciones en organismos vivos. Las peroxidasas han surgido como biocatalizadores prometedores con aplicaciones biotecnológicas versátiles. Este artículo tiene como objetivo proporcionar un análisis detallado de las peroxidasas en plantas tropicales colombianas y su potencial en la detección electroquímica. El estudio comienza elucidando las características estructurales y funcionales de las peroxidasas en plantas, explorando su clasificación y destacando sus mecanismos catalíticos. Luego profundiza en la especificidad y afinidad de los diferentes sustratos de las peroxidasas de plantas y las compara con otras peroxidasas. Además, se examinan exhaustivamente las diversas técnicas electroquímicas relevantes para la detección y sus aplicaciones en el desarrollo de biosensores. Se evalúan críticamente los desafíos y las perspectivas de utilizar peroxidasas de plantas colombianas en aplicaciones de detección.
En resumen, este estudio destaca la importancia de las peroxidasas en plantas como herramienta bioanalítica valiosa. Sus aplicaciones multifacéticas en los sectores de análisis ambiental, agrícola, alimentario y farmacéutico las convierten en elementos indispensables para abordar desafíos contemporáneos. La información proporcionada aquí sirve como base para futuros esfuerzos de investigación dirigidos a aprovechar todo el potencial de las peroxidasas de plantas tropicales colombianas para la construcción de biosensores electroquímicos.
Referencias
Abdulwahhab Mohammed, W., & M-Ridha, M. J. (2024). Extraction and purification techniques of the bio-catalyst cabbage peroxidase enzyme to remove reactive dyes and bisphenol-A pollutants. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2024.101961
Adegoke, O., Oyinlola, K., Achadu, O. J., & Yang, Z. (2023). Blue-emitting SiO2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein. Analytica Chimica Acta, 1281. https://doi.org/10.1016/j.aca.2023.341926
Al-Madhagi, H., Yazbik, V., & Abdelwahed, W. (2023). One-step isolation and purification of peroxidase from zucchini heads. Electronic Journal of Biotechnology, 66, 30–37. https://doi.org/10.1016/j.ejbt.2023.08.002
Alomía, Y. A., Otero, J. T., Jersáková, J., & Stevenson, P. R. (2022). Cultivable fungal community associated with the tropical orchid Dichaea andina. Fungal Ecology, 57–58. https://doi.org/10.1016/j.funeco.2022.101158
Alpeeva, I. S., Niculescu-Nistor, M., Leon, J. C., Csöregi, E., & Sakharov, I. Y. (2005). Palm tree peroxidase-based biosensor with unique characteristics for hydrogen peroxide monitoring. Biosensors and Bioelectronics, 21(5), 742–748. https://doi.org/10.1016/j.bios.2005.01.008
Alpeeva, I. S., & Sakharov, I. Y. (2007). Luminol oxidation catalyzed by royal palm leaf peroxidase. Applied Biochemistry and Microbiology, 43(1), 25–28. https://doi.org/10.1134/S0003683807010048
Al-Senaidy, A. M., & Ismael, M. A. (2011). Purification and characterization of membrane-bound peroxidase from date palm leaves (Phoenix dactylifera L.). Saudi Journal of Biological Sciences, 18(3), 293–298. https://doi.org/10.1016/j.sjbs.2011.04.005
Bai, Y. Y., Wu, Z., Xu, C. M., Zhang, L., Feng, J., Pang, D. W., & Zhang, Z. L. (2020). One-to-many single entity electrochemistry biosensing for ultrasensitive detection of microrna. Analytical Chemistry, 92(1), 853–858. https://doi.org/10.1021/acs.analchem.9b03492
Baker, M. R., Zhao, H., Sakharov, I. Y., & Li, Q. X. (2014). Amino acid sequence of anionic peroxidase from the windmill palm tree trachycarpus fortunei. Journal of Agricultural and Food Chemistry, 62(49), 11941–11948. https://doi.org/10.1021/jf504511h
Bhapkar, S., Choudhari, U., Jadhav, U., & Jagtap, S. (2023). Evaluation of soybean peroxidase - Copper phosphate mediated organic-inorganic hybrid for hydrogen peroxide biosensor application. Sensors International, 4. https://doi.org/10.1016/j.sintl.2023.100242
Bilal, M., Barceló, D., & Iqbal, H. M. N. (2020). Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. In Science of the Total Environment (Vol. 749). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.142360
Bilal, M., Singh, A. K., Iqbal, H. M. N., Kim, T. H., Boczkaj, G., Athmaneh, K., & Ashraf, S. S. (2023). Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. Environmental Research, 239. https://doi.org/10.1016/j.envres.2023.117192
Brusova, Z., Ferapontova, E. E., Sakharov, I. Y., Magner, E., & Gorton, L. (2005). Bioelectrocatalysis of plant peroxidases immobilized on graphite in aqueous and mixed solvent media. Electroanalysis, 17(5–6), 460–468. https://doi.org/10.1002/elan.200403182
Carter-Searjeant, S., Fairclough, S. M., Haigh, S. J., Zou, Y., Curry, R. J., Taylor, P. N., Huang, C., Fleck, R., Machado, P., Kirkland, A. I., & Green, M. A. (2023). Nanoscale LiZnN - Luminescent Half-Heusler Quantum Dots. ACS Applied Optical Materials, 1(6), 1169–1173. https://doi.org/10.1021/acsaom.3c00065
Castillo, J., Gáspár, S., Sakharov, I., & Csöregi, E. (2003). Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase. Biosensors and Bioelectronics, 18(5–6), 705–714. https://doi.org/10.1016/S0956-5663(03)00011-3
Castillo, J., Guarin-Guio, P. A., & Ortiz, L. (2022). Bio-Electrocatalytic Reduction of Hydrogen Peroxide by Peroxidase from Guinea Grass (Panicum Maximum) Immobilized on Graphene and Graphene Oxide Screen-Printed Electrodesa. Ingenieria y Universidad, 26. https://doi.org/10.11144/javeriana.iued26.brhp
Centeno, D. A., Solano, X. H., & Castillo, J. J. (2017). A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry, 116, 33–38. https://doi.org/10.1016/j.bioelechem.2017.03.005
Cerdeira Ferreira, L. M., Lima, D., Marcolino-Junior, L. H., Bergamini, M. F., Kuss, S., & Campanhã Vicentini, F. (2024). Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review. In Bioelectrochemistry (Vol. 157). Elsevier B.V. https://doi.org/10.1016/j.bioelechem.2023.108632
Cuadrado, N. H., Arellano, J. B., Calvete, J. J., Sanz, L., Zhadan, G. G., Polikarpov, I., Bursakov, S., Roig, M. G., & Shnyrov, V. L. (2012). Substrate specificity of the Chamaerops excelsa palm tree peroxidase. A steady-state kinetic study. Journal of Molecular Catalysis B: Enzymatic, 74(1–2), 103–108. https://doi.org/10.1016/j.molcatb.2011.09.005
de Oliveira, F. K., Santos, L. O., & Buffon, J. G. (2021). Mechanism of action, sources, and application of peroxidases. In Food Research International (Vol. 143). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2021.110266
Di Noto, V., Pagot, G., Negro, E., Vezzù, K., Kulesza, P. J., Rutkowska, I. A., & Pace, G. (2022). A formalism to compare electrocatalysts for the oxygen reduction reaction by cyclic voltammetry with the thin-film rotating ring-disk electrode measurements. In Current Opinion in Electrochemistry (Vol. 31). Elsevier B.V. https://doi.org/10.1016/j.coelec.2021.100839
Ficek, M., Cieślik, M., Janik, M., Brodowski, M., Sawczak, M., Bogdanowicz, R., & Ryl, J. (2023). Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Microchimica Acta, 190(10). https://doi.org/10.1007/s00604-023-05991-w
Freitas, C. D. T., Costa, J. H., Germano, T. A., de O. Rocha, R., Ramos, M. V., & Bezerra, L. P. (2024). Class III plant peroxidases: From classification to physiological functions. In International Journal of Biological Macromolecules (Vol. 263). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2024.130306
Garcia-Vallejo, M. C., & Alzate, C. A. C. (2024). Life cycle assessment of the cassava simplified value chain in Colombia and the use of cassava residues as energy carriers. Industrial Crops and Products, 210. https://doi.org/10.1016/j.indcrop.2024.118135
Gaspar, S., Catalin Popescu, I., Gazaryan, I. G., Bautista, A. G., Sakharov, I. Y., Mattiasson, B., & Csö Regi, E. (2000). Biosensors based on novel plant peroxidases: a comparative study. In Electrochimica Acta (Vol. 46). www.elsevier.nl/locate/electacta
González-Hernández, J., Moya-Alvarado, G., Alvarado-Gámez, A. L., Urcuyo, R., Barquero-Quirós, M., & Arcos-Martínez, M. J. (2022). Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Microchimica Acta, 189(12). https://doi.org/10.1007/s00604-022-05578-x
Guarín, P., Cristancho, J., & Castillo, J. J. (n.d.). Rapid electrochemical detection of Staphylococcus aureus. https://doi.org/10.18257/raccefyn
Guille-Collignon, M., & Lemaître, F. (2021). Recent developments concerning the investigation of exocytosis with amperometry. In Current Opinion in Electrochemistry (Vol. 29). Elsevier B.V. https://doi.org/10.1016/j.coelec.2021.100751
Guo, Y., Tang, Y., Zhang, L., Liu, Y., Ma, Q., & Zhao, L. (2024). Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. International Journal of Biological Macromolecules, 260. https://doi.org/10.1016/j.ijbiomac.2024.129664
Han, Y., Lu, J., Wang, M., Sun, C., Yang, J., & Li, G. (2022). An electrochemical biosensor for exosome detection based on covalent organic frameworks conjugated with DNA and horseradish peroxidase. Journal of Electroanalytical Chemistry, 920. https://doi.org/10.1016/j.jelechem.2022.116576
Hrdlička, V., Navrátil, T., Barek, J., & Ludvík, J. (2018). Electrochemical behavior of polycrystalline gold electrode modified by thiolated calix[4]arene and undecanethiol. Journal of Electroanalytical Chemistry, 821, 60–66. https://doi.org/10.1016/j.jelechem.2018.01.055
Jaramillo, M. A., Reyes-Palencia, J., & Jiménez, P. (2024). Floral biology and flower visitors of cocoa (Theobroma cacao L.) in the upper Magdalena Valley, Colombia. Flora, 313, 152480. https://doi.org/10.1016/j.flora.2024.152480
Kotchey, G. P., Zhao, Y., Kagan, V. E., & Star, A. (2013). Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. In Advanced Drug Delivery Reviews (Vol. 65, Issue 15, pp. 1921–1932). https://doi.org/10.1016/j.addr.2013.07.007
Kulkarni, S. S., Wu, C. T., Sridhar, V., Ponnusamy, V. K., & Chattopadhyay, S. (2022). Bi2Te3-Au Nanocomposite Schottky Junction with Peroxidase Activity for Glucose Sensing. ACS Applied Nano Materials, 5(10), 15563–15573. https://doi.org/10.1021/acsanm.2c03589
Lai, G. S., Zhang, H. L., & Han, D. Y. (2009). Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde. Microchimica Acta, 165(1–2), 159–165. https://doi.org/10.1007/s00604-008-0114-2
Lazanas, A. C., & Prodromidis, M. I. (2023). Electrochemical Impedance Spectroscopy─A Tutorial. In ACS Measurement Science Au (Vol. 3, Issue 3, pp. 162–193). American Chemical Society. https://doi.org/10.1021/acsmeasuresciau.2c00070
Leon, J. C., Alpeeva, I. S., Chubar, T. A., Galaev, I. Y., Csoregi, E., & Sakharov, I. Y. (2002). Purification and substrate specificity of peroxidase from sweet potato tubers. Plant Science, 163(5), 1011–1019. https://doi.org/10.1016/S0168-9452(02)00275-3
Liu, L., & Wang, P. (2024). Fabrication of an electrochemical impedance sensor for ketamine hydrochloride and its application in the detection of doping substances in sports. International Journal of Electrochemical Science, 19(3). https://doi.org/10.1016/j.ijoes.2024.100520
Liu, Y., Zhu, F., Shen, Z., Moural, T. W., Liu, L., Li, Z., Liu, X., & Xu, H. (2021). Glutaredoxins and thioredoxin peroxidase involved in defense of emamectin benzoate induced oxidative stress in Grapholita molesta. Pesticide Biochemistry and Physiology, 176. https://doi.org/10.1016/j.pestbp.2021.104881
Mathé, C., Barre, A., Jourda, C., & Dunand, C. (2010). Evolution and expression of class III peroxidases. In Archives of Biochemistry and Biophysics (Vol. 500, Issue 1, pp. 58–65). https://doi.org/10.1016/j.abb.2010.04.007
Moghtaderi, H., Sadeghian, G., Abiri, H., Khan, F., Rahman, M. M., Al-Harrasi, A., & Rahman, S. M. (2024). Electric cell-substrate impedance sensing in cancer research: An in-depth exploration of impedance sensing for profiling cancer cell behavior. Sensors and Actuators Reports, 7, 100188. https://doi.org/10.1016/j.snr.2024.100188
Octobre, G., Delprat, N., Doumèche, B., & Leca-Bouvier, B. (2024). Herbicide detection: A review of enzyme- and cell-based biosensors. Environmental Research, 249, 118330. https://doi.org/10.1016/j.envres.2024.118330
Olgaç, N., Karakuş, E., Şahin, Y., & Liv, L. (2023). Electrochemical biosensing of cortisol in a hormone tablet and artificial bodily fluids. Diamond and Related Materials, 132. https://doi.org/10.1016/j.diamond.2022.109622
Orduz, A. E., Gutiérrez, J. A., Blanco, S. I., & Castillo, J. J. (2019). Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase. Universitas Scientiarum, 24(2), 363–379. https://doi.org/10.11144/JAVERIANA.SC24-2.ADOT
Palsaniya, S., Pal, T., & Mukherji, S. (2023). Highly sensitive detection of amoxicillin by polyaniline-AgBr amperometry sensor: Fabrication and application in tap water and lake water. Chemical Engineering Journal, 466. https://doi.org/10.1016/j.cej.2023.143025
Rafaqat, S., Perveen, B., Raqba, Imran, W., Hussain, A., & Ali, N. (2024). Development of manganese peroxidase based voltammetric biosensor for detection of textile Azo dyes RR 195 & RB 221. Materials Chemistry and Physics, 312. https://doi.org/10.1016/j.matchemphys.2023.128647
Robinson, C., Juska, V. B., & O’Riordan, A. (2023). Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. In Environmental Research (Vol. 237). Academic Press Inc. https://doi.org/10.1016/j.envres.2023.116877
Rodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, E., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Shnyrov, V. L. (2002a). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269(10), 2584–2590. https://doi.org/10.1046/j.1432-1033.2002.02930.x
Rodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, E., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Shnyrov, V. L. (2002b). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269(10), 2584–2590. https://doi.org/10.1046/j.1432-1033.2002.02930.x
Rodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, E., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Shnyrov, V. L. (2002c). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269(10), 2584–2590. https://doi.org/10.1046/j.1432-1033.2002.02930.x
Sakharov, I. Y., Vesga, M. K., Galaev, I. Y., Sakharova, I. V, & Pletjushkina, O. Y. (2001). Peroxidase from leaves of royal palm tree Roystonea regia: purification and some properties. In Plant Science (Vol. 161). www.elsevier.com/locate/plantsci
Sethi, J., Van Bulck, M., Suhail, A., Safarzadeh, M., Perez-Castillo, A., & Pan, G. (2020). A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchimica Acta, 187(5). https://doi.org/10.1007/s00604-020-04267-x
Shashaani, H., Akbari, N., Faramarzpour, M., Parizi, M. S., Vanaei, S., Khayamian, M. A., Faranoush, M., Anbiaee, R., & Abdolahad, M. (2021). Cyclic voltammetric biosensing of cellular ionic secretion based on silicon nanowires to detect the effect of paclitaxel on breast normal and cancer cells. Microelectronic Engineering, 239–240. https://doi.org/10.1016/j.mee.2021.111512
Shi, W., Li, J., Wu, J., Wei, Q., Chen, C., Bao, N., Yu, C., & Gu, H. (n.d.). An electrochemical biosensor based on multi-wall carbon nanotube-modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. https://doi.org/10.1007/s00216-020-02860-w/Published
Shi, Z., Deng, P., Zhou, L., Jin, M., Fang, F., Chen, T., Liu, G., Wen, H., An, Z., Liang, H., Lu, Y., Liu, J., & Liu, Q. (2024). Wireless and battery-free wearable biosensing of riboflavin in sweat for precision nutrition. Biosensors and Bioelectronics, 116136. https://doi.org/10.1016/j.bios.2024.116136
Škulj, S., Kožić, M., Barišić, A., Vega, A., Biarnés, X., Piantanida, I., Barisic, I., & Bertoša, B. (2024). Comparison of two peroxidases with high potential for biotechnology applications – HRP vs. APEX2. Computational and Structural Biotechnology Journal, 23, 742–751. https://doi.org/10.1016/j.csbj.2024.01.001
Smart, A., Crew, A., Doran, O., & Hart, J. P. (2023). Development of a novel dual-enzyme screen-printed amperometric biosensor for the analysis of esterified fatty acids. Journal of Food Composition and Analysis, 122. https://doi.org/10.1016/j.jfca.2023.105488
Sopoušek, J., Věžník, J., Skládal, P., & Lacina, K. (2020). Blocking the Nanopores in a Layer of Nonconductive Nanoparticles: Dominant Effects Therein and Challenges for Electrochemical Impedimetric Biosensing. ACS Applied Materials and Interfaces, 12(12), 14620–14628. https://doi.org/10.1021/acsami.0c02650
Sridhar, S., Ajo-Franklin, C. M., & Masiello, C. A. (2022). A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. In ACS Synthetic Biology (Vol. 11, Issue 9, pp. 2909–2916). American Chemical Society. https://doi.org/10.1021/acssynbio.2c00079
Su, Z., Li, T., Wu, D., Wu, Y., & Li, G. (2022). Recent Progress on Single-Molecule Detection Technologies for Food Safety. In Journal of Agricultural and Food Chemistry (Vol. 70, Issue 2, pp. 458–469). American Chemical Society. https://doi.org/10.1021/acs.jafc.1c06808
Suthar, J., Prieto-Simon, B., Williams, G. R., & Guldin, S. (2022). Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Analytical Chemistry, 94(5), 2465–2475. https://doi.org/10.1021/acs.analchem.1c04282
Tapak, N. S., Nawawi, M. A., Tjih, E. T. T., Mohd, Y., Rashid, A. H. A., Abdullah, J., Yusof, N. A., & Ahmad, N. M. (2022). The synthesis of zirconium oxide (ZrO2) nanoparticles (NPs) in 1-butyl-3-methylimidazolium trifluoroacetate (BMIMCF3COO) for an amperometry phenol biosensor. Materials Today Communications, 33. https://doi.org/10.1016/j.mtcomm.2022.104142
Tripathi, A., & Bonilla-Cruz, J. (2023). Review on Healthcare Biosensing Nanomaterials. In ACS Applied Nano Materials (Vol. 6, Issue 7, pp. 5042–5074). American Chemical Society. https://doi.org/10.1021/acsanm.3c00941
Tsounidi, D., Soulis, D., Manoli, F., Klinakis, A., & Tsekenis, G. (2023). AChE-based electrochemical biosensor for pesticide detection in vegetable oils: matrix effects and synergistic inhibition of the immobilized enzyme. Analytical and Bioanalytical Chemistry, 415(4), 615–625. https://doi.org/10.1007/s00216-022-04448-y
Uribe, P. A., Ortiz, C. C., Centeno, D. A., Castillo, J. J., Blanco, S. I., & Gutierrez, J. A. (2019). Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 18–24. https://doi.org/10.1016/j.colsurfa.2018.10.051
Vatankhahan, H., Esteki, F., Jabalameli, M. A., Kiani, P., Ehtiati, S., Movahedpour, A., Vakili, O., & Khatami, S. H. (2024). Electrochemical biosensors for early diagnosis of glioblastoma. Clinica Chimica Acta, 557, 117878. https://doi.org/10.1016/j.cca.2024.117878
Villamizar, E. N., Ríos, C. A., & Castillo, J. J. (2016). A Hydrogen Peroxide Biosensor Based on the Immobilization of the Highly Stable Royal Palm Tree Peroxidase (Roystonea regia) with Chitosan and Glutaraldehyde on Screen-printed Graphene Electrodes. In Chem. Soc (Vol. 60, Issue 3).
Vishwakarma, H., Sharma, S., Panzade, K. P., Kharate, P. S., Kumar, A., Singh, N., Avashthi, H., Rangan, P., Singh, A. K., Singh, A., Angadi, U. B., Siddique, K. H. M., Singh, K., Singh, G. P., Pandey, R., & Yadav, R. (2024). Genome-wide analysis of the class III peroxidase gene family in sesame and SiPRXs gene validation by expression analysis under drought stress. Plant Stress, 11. https://doi.org/10.1016/j.stress.2024.100367
Watanabe, L., Nascimento, A. S., Zamorano, L. S., Shnyrov, V. L., & Polikarpov, I. (2007). Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63(9), 780–783. https://doi.org/10.1107/S174430910703984X
Wong, R. A., Yokota, Y., & Kim, Y. (2022). Stepping beyond cyclic voltammetry: Obtaining the electronic and structural properties of electrified solid–liquid interfaces. In Current Opinion in Electrochemistry (Vol. 34). Elsevier B.V. https://doi.org/10.1016/j.coelec.2022.100964
Xiao, F., Zhou, H., Lin, H., Li, H., Zou, T., Wu, Y., & Guo, Z. (2021). A fast scan cyclic voltammetric digital circuit with precise ohmic drop compensation by online measuring solution resistance and its biosensing application. Analytica Chimica Acta, 1175. https://doi.org/10.1016/j.aca.2021.338744
Yaghoobi, A., Abiri, R., Alvandi, A., Arkan, E., Mohammadi, G., Farshadnia, T., & Jalalvand, A. R. (2022). An efficiently engineered electrochemical biosensor as a novel and user-friendly electronic device for biosensing of Streptococcus Pneumoniae bacteria. Sensing and Bio-Sensing Research, 36. https://doi.org/10.1016/j.sbsr.2022.100494
Yang, X., Jin, C., Yu, K., & Tian, M. (2023). Immobilized horseradish peroxidase on boric acid modified polyoxometalate molecularly imprinted polymer for biocatalytic degradation of phenol in wastewater: Optimized immobilization, degradation and toxicity assessment. Environmental Research, 231. https://doi.org/10.1016/j.envres.2023.116164
Yuan, M., Zhao, H., Huang, Q., Liu, X., Zhou, Y., Diao, X., & Li, Q. X. (2021). Comparison of three palm tree peroxidases expressed by Escherichia coli: Uniqueness of African oil palm peroxidase. Protein Expression and Purification, 179. https://doi.org/10.1016/j.pep.2020.105806
Zamorano, L. S., Pina, D. G., Arellano, J. B., Bursakov, S. A., Zhadan, A. P., Calvete, J. J., Sanz, L., Nielsen, P. R., Villar, E., Gavel, O., Roig, M. G., Watanabe, L., Polikarpov, I., & Shnyrov, V. L. (2008). Thermodynamic characterization of the palm tree Roystonea regia peroxidase stability. Biochimie, 90(11–12), 1737–1749. https://doi.org/10.1016/j.biochi.2008.07.010
Zhang, S., Wu, J., Yuan, D., Zhang, D., Huang, Z., Xiao, L., & Yang, C. (2014). Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates arabidopsis architecture. Molecular Plant, 7(5), 856–873. https://doi.org/10.1093/mp/ssu006
Zhang, X., Lou, J., Yuan, J., Xu, J., & Fan, X. (2023). Style decolorization treatment of denim fabric: Decomposition of indigo dyes via horseradish peroxidase/H2O2 system at room temperature. Sustainable Chemistry and Pharmacy, 35. https://doi.org/10.1016/j.scp.2023.101233
Zhang, Y., Zhao, H., Qian, L., Sun, M., Lv, X., Zhang, L., Petersen, J., & Qiu, G. (2020). A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis. In Minerals Engineering (Vol. 158). Elsevier Ltd. https://doi.org/10.1016/j.mineng.2020.106586
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).