Publicado

2024-12-11

From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases

Del Campo al Laboratorio: Biosensores Electroquímicos de Peroxidasas de Plantas Colombianas

DOI:

https://doi.org/10.15446/rev.colomb.biote.v26n2.113613

Palabras clave:

peroxidasa de plantas colombianas, biodetección, biosensores electroquímicos, electrodos serigrafiados, peroxidases, biosensing, electrochemical biosensors, biocatalyst (en)

Descargas

Autores/as

The peroxidases are a class of enzymes found in various species of Colombian tropical plants. These enzymes belong to the larger group of peroxidases, which are heme-containing proteins involved in catalysing a wide range of reactions in living organisms. Peroxidases have emerged as promising biocatalysts with versatile biotechnological applications. This paper aims to provide a detailed analysis of peroxidases in Colombian tropical plants and their potential in electrochemical sensing. The review begins by elucidating the structural and functional characteristics of peroxidases in plants, exploring their classification, and highlighting their catalytic mechanisms. It then delves into the various substrate specificity and affinity of plant peroxidases and its comparison with other peroxidases. Furthermore, the diverse electrochemical techniques relevant to biosensing and their applications in biosensor development are thoroughly examined. The challenges and prospects of utilizing Colombian plant peroxidases in biosensing applications are critically evaluated.

In summary, this study highlights the significance of peroxidases in plants as valuable bioanalytical tool. Their multifaceted applications in environmental, agricultural, food, and pharmaceutical bioanalysis sectors make them indispensable in addressing contemporary challenges. The insights provided herein serve as a foundation for future research endeavours aimed at harnessing the full potential of Colombian tropical plant peroxidases for the construction of electrochemical biosensors.

Las peroxidasas son una clase de enzimas presentes en diversas especies de plantas tropicales colombianas. Estas enzimas pertenecen al grupo más grande de peroxidasas, que son proteínas que contienen el grupo hemo y catalizan una amplia gama de reacciones en organismos vivos. Las peroxidasas han surgido como biocatalizadores prometedores con aplicaciones biotecnológicas versátiles. Este artículo tiene como objetivo proporcionar un análisis detallado de las peroxidasas en plantas tropicales colombianas y su potencial en la detección electroquímica. El estudio comienza elucidando las características estructurales y funcionales de las peroxidasas en plantas, explorando su clasificación y destacando sus mecanismos catalíticos. Luego profundiza en la especificidad y afinidad de los diferentes sustratos de las peroxidasas de plantas y las compara con otras peroxidasas. Además, se examinan exhaustivamente las diversas técnicas electroquímicas relevantes para la detección y sus aplicaciones en el desarrollo de biosensores. Se evalúan críticamente los desafíos y las perspectivas de utilizar peroxidasas de plantas colombianas en aplicaciones de detección.

En resumen, este estudio destaca la importancia de las peroxidasas en plantas como herramienta bioanalítica valiosa. Sus aplicaciones multifacéticas en los sectores de análisis ambiental, agrícola, alimentario y farmacéutico las convierten en elementos indispensables para abordar desafíos contemporáneos. La información proporcionada aquí sirve como base para futuros esfuerzos de investigación dirigidos a aprovechar todo el potencial de las peroxidasas de plantas tropicales colombianas para la construcción de biosensores electroquímicos.

Referencias

Abdulwahhab Mohammed, W., & M-Ridha, M. J. (2024). Extraction and purification techniques of the bio-catalyst cabbage peroxidase enzyme to remove reactive dyes and bisphenol-A pollutants. Results in Engineering, 21. https://doi.org/10.1016/j.rineng.2024.101961

Adegoke, O., Oyinlola, K., Achadu, O. J., & Yang, Z. (2023). Blue-emitting SiO2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein. Analytica Chimica Acta, 1281. https://doi.org/10.1016/j.aca.2023.341926

Al-Madhagi, H., Yazbik, V., & Abdelwahed, W. (2023). One-step isolation and purification of peroxidase from zucchini heads. Electronic Journal of Biotechnology, 66, 30–37. https://doi.org/10.1016/j.ejbt.2023.08.002

Alomía, Y. A., Otero, J. T., Jersáková, J., & Stevenson, P. R. (2022). Cultivable fungal community associated with the tropical orchid Dichaea andina. Fungal Ecology, 57–58. https://doi.org/10.1016/j.funeco.2022.101158

Alpeeva, I. S., Niculescu-Nistor, M., Leon, J. C., Csöregi, E., & Sakharov, I. Y. (2005). Palm tree peroxidase-based biosensor with unique characteristics for hydrogen peroxide monitoring. Biosensors and Bioelectronics, 21(5), 742–748. https://doi.org/10.1016/j.bios.2005.01.008

Alpeeva, I. S., & Sakharov, I. Y. (2007). Luminol oxidation catalyzed by royal palm leaf peroxidase. Applied Biochemistry and Microbiology, 43(1), 25–28. https://doi.org/10.1134/S0003683807010048

Al-Senaidy, A. M., & Ismael, M. A. (2011). Purification and characterization of membrane-bound peroxidase from date palm leaves (Phoenix dactylifera L.). Saudi Journal of Biological Sciences, 18(3), 293–298. https://doi.org/10.1016/j.sjbs.2011.04.005

Bai, Y. Y., Wu, Z., Xu, C. M., Zhang, L., Feng, J., Pang, D. W., & Zhang, Z. L. (2020). One-to-many single entity electrochemistry biosensing for ultrasensitive detection of microrna. Analytical Chemistry, 92(1), 853–858. https://doi.org/10.1021/acs.analchem.9b03492

Baker, M. R., Zhao, H., Sakharov, I. Y., & Li, Q. X. (2014). Amino acid sequence of anionic peroxidase from the windmill palm tree trachycarpus fortunei. Journal of Agricultural and Food Chemistry, 62(49), 11941–11948. https://doi.org/10.1021/jf504511h

Bhapkar, S., Choudhari, U., Jadhav, U., & Jagtap, S. (2023). Evaluation of soybean peroxidase - Copper phosphate mediated organic-inorganic hybrid for hydrogen peroxide biosensor application. Sensors International, 4. https://doi.org/10.1016/j.sintl.2023.100242

Bilal, M., Barceló, D., & Iqbal, H. M. N. (2020). Nanostructured materials for harnessing the power of horseradish peroxidase for tailored environmental applications. In Science of the Total Environment (Vol. 749). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.142360

Bilal, M., Singh, A. K., Iqbal, H. M. N., Kim, T. H., Boczkaj, G., Athmaneh, K., & Ashraf, S. S. (2023). Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. Environmental Research, 239. https://doi.org/10.1016/j.envres.2023.117192

Brusova, Z., Ferapontova, E. E., Sakharov, I. Y., Magner, E., & Gorton, L. (2005). Bioelectrocatalysis of plant peroxidases immobilized on graphite in aqueous and mixed solvent media. Electroanalysis, 17(5–6), 460–468. https://doi.org/10.1002/elan.200403182

Carter-Searjeant, S., Fairclough, S. M., Haigh, S. J., Zou, Y., Curry, R. J., Taylor, P. N., Huang, C., Fleck, R., Machado, P., Kirkland, A. I., & Green, M. A. (2023). Nanoscale LiZnN - Luminescent Half-Heusler Quantum Dots. ACS Applied Optical Materials, 1(6), 1169–1173. https://doi.org/10.1021/acsaom.3c00065

Castillo, J., Gáspár, S., Sakharov, I., & Csöregi, E. (2003). Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase. Biosensors and Bioelectronics, 18(5–6), 705–714. https://doi.org/10.1016/S0956-5663(03)00011-3

Castillo, J., Guarin-Guio, P. A., & Ortiz, L. (2022). Bio-Electrocatalytic Reduction of Hydrogen Peroxide by Peroxidase from Guinea Grass (Panicum Maximum) Immobilized on Graphene and Graphene Oxide Screen-Printed Electrodesa. Ingenieria y Universidad, 26. https://doi.org/10.11144/javeriana.iued26.brhp

Centeno, D. A., Solano, X. H., & Castillo, J. J. (2017). A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors. Bioelectrochemistry, 116, 33–38. https://doi.org/10.1016/j.bioelechem.2017.03.005

Cerdeira Ferreira, L. M., Lima, D., Marcolino-Junior, L. H., Bergamini, M. F., Kuss, S., & Campanhã Vicentini, F. (2024). Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review. In Bioelectrochemistry (Vol. 157). Elsevier B.V. https://doi.org/10.1016/j.bioelechem.2023.108632

Cuadrado, N. H., Arellano, J. B., Calvete, J. J., Sanz, L., Zhadan, G. G., Polikarpov, I., Bursakov, S., Roig, M. G., & Shnyrov, V. L. (2012). Substrate specificity of the Chamaerops excelsa palm tree peroxidase. A steady-state kinetic study. Journal of Molecular Catalysis B: Enzymatic, 74(1–2), 103–108. https://doi.org/10.1016/j.molcatb.2011.09.005

de Oliveira, F. K., Santos, L. O., & Buffon, J. G. (2021). Mechanism of action, sources, and application of peroxidases. In Food Research International (Vol. 143). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2021.110266

Di Noto, V., Pagot, G., Negro, E., Vezzù, K., Kulesza, P. J., Rutkowska, I. A., & Pace, G. (2022). A formalism to compare electrocatalysts for the oxygen reduction reaction by cyclic voltammetry with the thin-film rotating ring-disk electrode measurements. In Current Opinion in Electrochemistry (Vol. 31). Elsevier B.V. https://doi.org/10.1016/j.coelec.2021.100839

Ficek, M., Cieślik, M., Janik, M., Brodowski, M., Sawczak, M., Bogdanowicz, R., & Ryl, J. (2023). Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications. Microchimica Acta, 190(10). https://doi.org/10.1007/s00604-023-05991-w

Freitas, C. D. T., Costa, J. H., Germano, T. A., de O. Rocha, R., Ramos, M. V., & Bezerra, L. P. (2024). Class III plant peroxidases: From classification to physiological functions. In International Journal of Biological Macromolecules (Vol. 263). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2024.130306

Garcia-Vallejo, M. C., & Alzate, C. A. C. (2024). Life cycle assessment of the cassava simplified value chain in Colombia and the use of cassava residues as energy carriers. Industrial Crops and Products, 210. https://doi.org/10.1016/j.indcrop.2024.118135

Gaspar, S., Catalin Popescu, I., Gazaryan, I. G., Bautista, A. G., Sakharov, I. Y., Mattiasson, B., & Csö Regi, E. (2000). Biosensors based on novel plant peroxidases: a comparative study. In Electrochimica Acta (Vol. 46). www.elsevier.nl/locate/electacta

González-Hernández, J., Moya-Alvarado, G., Alvarado-Gámez, A. L., Urcuyo, R., Barquero-Quirós, M., & Arcos-Martínez, M. J. (2022). Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome c on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Microchimica Acta, 189(12). https://doi.org/10.1007/s00604-022-05578-x

Guarín, P., Cristancho, J., & Castillo, J. J. (n.d.). Rapid electrochemical detection of Staphylococcus aureus. https://doi.org/10.18257/raccefyn

Guille-Collignon, M., & Lemaître, F. (2021). Recent developments concerning the investigation of exocytosis with amperometry. In Current Opinion in Electrochemistry (Vol. 29). Elsevier B.V. https://doi.org/10.1016/j.coelec.2021.100751

Guo, Y., Tang, Y., Zhang, L., Liu, Y., Ma, Q., & Zhao, L. (2024). Enzymatic characterization and application of soybean hull peroxidase as an efficient and renewable biocatalyst for degradation of zearalenone. International Journal of Biological Macromolecules, 260. https://doi.org/10.1016/j.ijbiomac.2024.129664

Han, Y., Lu, J., Wang, M., Sun, C., Yang, J., & Li, G. (2022). An electrochemical biosensor for exosome detection based on covalent organic frameworks conjugated with DNA and horseradish peroxidase. Journal of Electroanalytical Chemistry, 920. https://doi.org/10.1016/j.jelechem.2022.116576

Hrdlička, V., Navrátil, T., Barek, J., & Ludvík, J. (2018). Electrochemical behavior of polycrystalline gold electrode modified by thiolated calix[4]arene and undecanethiol. Journal of Electroanalytical Chemistry, 821, 60–66. https://doi.org/10.1016/j.jelechem.2018.01.055

Jaramillo, M. A., Reyes-Palencia, J., & Jiménez, P. (2024). Floral biology and flower visitors of cocoa (Theobroma cacao L.) in the upper Magdalena Valley, Colombia. Flora, 313, 152480. https://doi.org/10.1016/j.flora.2024.152480

Kotchey, G. P., Zhao, Y., Kagan, V. E., & Star, A. (2013). Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. In Advanced Drug Delivery Reviews (Vol. 65, Issue 15, pp. 1921–1932). https://doi.org/10.1016/j.addr.2013.07.007

Kulkarni, S. S., Wu, C. T., Sridhar, V., Ponnusamy, V. K., & Chattopadhyay, S. (2022). Bi2Te3-Au Nanocomposite Schottky Junction with Peroxidase Activity for Glucose Sensing. ACS Applied Nano Materials, 5(10), 15563–15573. https://doi.org/10.1021/acsanm.2c03589

Lai, G. S., Zhang, H. L., & Han, D. Y. (2009). Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde. Microchimica Acta, 165(1–2), 159–165. https://doi.org/10.1007/s00604-008-0114-2

Lazanas, A. C., & Prodromidis, M. I. (2023). Electrochemical Impedance Spectroscopy─A Tutorial. In ACS Measurement Science Au (Vol. 3, Issue 3, pp. 162–193). American Chemical Society. https://doi.org/10.1021/acsmeasuresciau.2c00070

Leon, J. C., Alpeeva, I. S., Chubar, T. A., Galaev, I. Y., Csoregi, E., & Sakharov, I. Y. (2002). Purification and substrate specificity of peroxidase from sweet potato tubers. Plant Science, 163(5), 1011–1019. https://doi.org/10.1016/S0168-9452(02)00275-3

Liu, L., & Wang, P. (2024). Fabrication of an electrochemical impedance sensor for ketamine hydrochloride and its application in the detection of doping substances in sports. International Journal of Electrochemical Science, 19(3). https://doi.org/10.1016/j.ijoes.2024.100520

Liu, Y., Zhu, F., Shen, Z., Moural, T. W., Liu, L., Li, Z., Liu, X., & Xu, H. (2021). Glutaredoxins and thioredoxin peroxidase involved in defense of emamectin benzoate induced oxidative stress in Grapholita molesta. Pesticide Biochemistry and Physiology, 176. https://doi.org/10.1016/j.pestbp.2021.104881

Mathé, C., Barre, A., Jourda, C., & Dunand, C. (2010). Evolution and expression of class III peroxidases. In Archives of Biochemistry and Biophysics (Vol. 500, Issue 1, pp. 58–65). https://doi.org/10.1016/j.abb.2010.04.007

Moghtaderi, H., Sadeghian, G., Abiri, H., Khan, F., Rahman, M. M., Al-Harrasi, A., & Rahman, S. M. (2024). Electric cell-substrate impedance sensing in cancer research: An in-depth exploration of impedance sensing for profiling cancer cell behavior. Sensors and Actuators Reports, 7, 100188. https://doi.org/10.1016/j.snr.2024.100188

Octobre, G., Delprat, N., Doumèche, B., & Leca-Bouvier, B. (2024). Herbicide detection: A review of enzyme- and cell-based biosensors. Environmental Research, 249, 118330. https://doi.org/10.1016/j.envres.2024.118330

Olgaç, N., Karakuş, E., Şahin, Y., & Liv, L. (2023). Electrochemical biosensing of cortisol in a hormone tablet and artificial bodily fluids. Diamond and Related Materials, 132. https://doi.org/10.1016/j.diamond.2022.109622

Orduz, A. E., Gutiérrez, J. A., Blanco, S. I., & Castillo, J. J. (2019). Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase. Universitas Scientiarum, 24(2), 363–379. https://doi.org/10.11144/JAVERIANA.SC24-2.ADOT

Palsaniya, S., Pal, T., & Mukherji, S. (2023). Highly sensitive detection of amoxicillin by polyaniline-AgBr amperometry sensor: Fabrication and application in tap water and lake water. Chemical Engineering Journal, 466. https://doi.org/10.1016/j.cej.2023.143025

Rafaqat, S., Perveen, B., Raqba, Imran, W., Hussain, A., & Ali, N. (2024). Development of manganese peroxidase based voltammetric biosensor for detection of textile Azo dyes RR 195 & RB 221. Materials Chemistry and Physics, 312. https://doi.org/10.1016/j.matchemphys.2023.128647

Robinson, C., Juska, V. B., & O’Riordan, A. (2023). Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. In Environmental Research (Vol. 237). Academic Press Inc. https://doi.org/10.1016/j.envres.2023.116877

Rodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, E., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Shnyrov, V. L. (2002a). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269(10), 2584–2590. https://doi.org/10.1046/j.1432-1033.2002.02930.x

Rodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, E., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Shnyrov, V. L. (2002b). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269(10), 2584–2590. https://doi.org/10.1046/j.1432-1033.2002.02930.x

Rodríguez, A., Pina, D. G., Yélamos, B., Castillo León, J. J., Zhadan, G. G., Villar, E., Gavilanes, F., Roig, M. G., Sakharov, I. Y., & Shnyrov, V. L. (2002c). Thermal stability of peroxidase from the African oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269(10), 2584–2590. https://doi.org/10.1046/j.1432-1033.2002.02930.x

Sakharov, I. Y., Vesga, M. K., Galaev, I. Y., Sakharova, I. V, & Pletjushkina, O. Y. (2001). Peroxidase from leaves of royal palm tree Roystonea regia: purification and some properties. In Plant Science (Vol. 161). www.elsevier.com/locate/plantsci

Sethi, J., Van Bulck, M., Suhail, A., Safarzadeh, M., Perez-Castillo, A., & Pan, G. (2020). A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchimica Acta, 187(5). https://doi.org/10.1007/s00604-020-04267-x

Shashaani, H., Akbari, N., Faramarzpour, M., Parizi, M. S., Vanaei, S., Khayamian, M. A., Faranoush, M., Anbiaee, R., & Abdolahad, M. (2021). Cyclic voltammetric biosensing of cellular ionic secretion based on silicon nanowires to detect the effect of paclitaxel on breast normal and cancer cells. Microelectronic Engineering, 239–240. https://doi.org/10.1016/j.mee.2021.111512

Shi, W., Li, J., Wu, J., Wei, Q., Chen, C., Bao, N., Yu, C., & Gu, H. (n.d.). An electrochemical biosensor based on multi-wall carbon nanotube-modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. https://doi.org/10.1007/s00216-020-02860-w/Published

Shi, Z., Deng, P., Zhou, L., Jin, M., Fang, F., Chen, T., Liu, G., Wen, H., An, Z., Liang, H., Lu, Y., Liu, J., & Liu, Q. (2024). Wireless and battery-free wearable biosensing of riboflavin in sweat for precision nutrition. Biosensors and Bioelectronics, 116136. https://doi.org/10.1016/j.bios.2024.116136

Škulj, S., Kožić, M., Barišić, A., Vega, A., Biarnés, X., Piantanida, I., Barisic, I., & Bertoša, B. (2024). Comparison of two peroxidases with high potential for biotechnology applications – HRP vs. APEX2. Computational and Structural Biotechnology Journal, 23, 742–751. https://doi.org/10.1016/j.csbj.2024.01.001

Smart, A., Crew, A., Doran, O., & Hart, J. P. (2023). Development of a novel dual-enzyme screen-printed amperometric biosensor for the analysis of esterified fatty acids. Journal of Food Composition and Analysis, 122. https://doi.org/10.1016/j.jfca.2023.105488

Sopoušek, J., Věžník, J., Skládal, P., & Lacina, K. (2020). Blocking the Nanopores in a Layer of Nonconductive Nanoparticles: Dominant Effects Therein and Challenges for Electrochemical Impedimetric Biosensing. ACS Applied Materials and Interfaces, 12(12), 14620–14628. https://doi.org/10.1021/acsami.0c02650

Sridhar, S., Ajo-Franklin, C. M., & Masiello, C. A. (2022). A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. In ACS Synthetic Biology (Vol. 11, Issue 9, pp. 2909–2916). American Chemical Society. https://doi.org/10.1021/acssynbio.2c00079

Su, Z., Li, T., Wu, D., Wu, Y., & Li, G. (2022). Recent Progress on Single-Molecule Detection Technologies for Food Safety. In Journal of Agricultural and Food Chemistry (Vol. 70, Issue 2, pp. 458–469). American Chemical Society. https://doi.org/10.1021/acs.jafc.1c06808

Suthar, J., Prieto-Simon, B., Williams, G. R., & Guldin, S. (2022). Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Analytical Chemistry, 94(5), 2465–2475. https://doi.org/10.1021/acs.analchem.1c04282

Tapak, N. S., Nawawi, M. A., Tjih, E. T. T., Mohd, Y., Rashid, A. H. A., Abdullah, J., Yusof, N. A., & Ahmad, N. M. (2022). The synthesis of zirconium oxide (ZrO2) nanoparticles (NPs) in 1-butyl-3-methylimidazolium trifluoroacetate (BMIMCF3COO) for an amperometry phenol biosensor. Materials Today Communications, 33. https://doi.org/10.1016/j.mtcomm.2022.104142

Tripathi, A., & Bonilla-Cruz, J. (2023). Review on Healthcare Biosensing Nanomaterials. In ACS Applied Nano Materials (Vol. 6, Issue 7, pp. 5042–5074). American Chemical Society. https://doi.org/10.1021/acsanm.3c00941

Tsounidi, D., Soulis, D., Manoli, F., Klinakis, A., & Tsekenis, G. (2023). AChE-based electrochemical biosensor for pesticide detection in vegetable oils: matrix effects and synergistic inhibition of the immobilized enzyme. Analytical and Bioanalytical Chemistry, 415(4), 615–625. https://doi.org/10.1007/s00216-022-04448-y

Uribe, P. A., Ortiz, C. C., Centeno, D. A., Castillo, J. J., Blanco, S. I., & Gutierrez, J. A. (2019). Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 18–24. https://doi.org/10.1016/j.colsurfa.2018.10.051

Vatankhahan, H., Esteki, F., Jabalameli, M. A., Kiani, P., Ehtiati, S., Movahedpour, A., Vakili, O., & Khatami, S. H. (2024). Electrochemical biosensors for early diagnosis of glioblastoma. Clinica Chimica Acta, 557, 117878. https://doi.org/10.1016/j.cca.2024.117878

Villamizar, E. N., Ríos, C. A., & Castillo, J. J. (2016). A Hydrogen Peroxide Biosensor Based on the Immobilization of the Highly Stable Royal Palm Tree Peroxidase (Roystonea regia) with Chitosan and Glutaraldehyde on Screen-printed Graphene Electrodes. In Chem. Soc (Vol. 60, Issue 3).

Vishwakarma, H., Sharma, S., Panzade, K. P., Kharate, P. S., Kumar, A., Singh, N., Avashthi, H., Rangan, P., Singh, A. K., Singh, A., Angadi, U. B., Siddique, K. H. M., Singh, K., Singh, G. P., Pandey, R., & Yadav, R. (2024). Genome-wide analysis of the class III peroxidase gene family in sesame and SiPRXs gene validation by expression analysis under drought stress. Plant Stress, 11. https://doi.org/10.1016/j.stress.2024.100367

Watanabe, L., Nascimento, A. S., Zamorano, L. S., Shnyrov, V. L., & Polikarpov, I. (2007). Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63(9), 780–783. https://doi.org/10.1107/S174430910703984X

Wong, R. A., Yokota, Y., & Kim, Y. (2022). Stepping beyond cyclic voltammetry: Obtaining the electronic and structural properties of electrified solid–liquid interfaces. In Current Opinion in Electrochemistry (Vol. 34). Elsevier B.V. https://doi.org/10.1016/j.coelec.2022.100964

Xiao, F., Zhou, H., Lin, H., Li, H., Zou, T., Wu, Y., & Guo, Z. (2021). A fast scan cyclic voltammetric digital circuit with precise ohmic drop compensation by online measuring solution resistance and its biosensing application. Analytica Chimica Acta, 1175. https://doi.org/10.1016/j.aca.2021.338744

Yaghoobi, A., Abiri, R., Alvandi, A., Arkan, E., Mohammadi, G., Farshadnia, T., & Jalalvand, A. R. (2022). An efficiently engineered electrochemical biosensor as a novel and user-friendly electronic device for biosensing of Streptococcus Pneumoniae bacteria. Sensing and Bio-Sensing Research, 36. https://doi.org/10.1016/j.sbsr.2022.100494

Yang, X., Jin, C., Yu, K., & Tian, M. (2023). Immobilized horseradish peroxidase on boric acid modified polyoxometalate molecularly imprinted polymer for biocatalytic degradation of phenol in wastewater: Optimized immobilization, degradation and toxicity assessment. Environmental Research, 231. https://doi.org/10.1016/j.envres.2023.116164

Yuan, M., Zhao, H., Huang, Q., Liu, X., Zhou, Y., Diao, X., & Li, Q. X. (2021). Comparison of three palm tree peroxidases expressed by Escherichia coli: Uniqueness of African oil palm peroxidase. Protein Expression and Purification, 179. https://doi.org/10.1016/j.pep.2020.105806

Zamorano, L. S., Pina, D. G., Arellano, J. B., Bursakov, S. A., Zhadan, A. P., Calvete, J. J., Sanz, L., Nielsen, P. R., Villar, E., Gavel, O., Roig, M. G., Watanabe, L., Polikarpov, I., & Shnyrov, V. L. (2008). Thermodynamic characterization of the palm tree Roystonea regia peroxidase stability. Biochimie, 90(11–12), 1737–1749. https://doi.org/10.1016/j.biochi.2008.07.010

Zhang, S., Wu, J., Yuan, D., Zhang, D., Huang, Z., Xiao, L., & Yang, C. (2014). Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates arabidopsis architecture. Molecular Plant, 7(5), 856–873. https://doi.org/10.1093/mp/ssu006

Zhang, X., Lou, J., Yuan, J., Xu, J., & Fan, X. (2023). Style decolorization treatment of denim fabric: Decomposition of indigo dyes via horseradish peroxidase/H2O2 system at room temperature. Sustainable Chemistry and Pharmacy, 35. https://doi.org/10.1016/j.scp.2023.101233

Zhang, Y., Zhao, H., Qian, L., Sun, M., Lv, X., Zhang, L., Petersen, J., & Qiu, G. (2020). A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis. In Minerals Engineering (Vol. 158). Elsevier Ltd. https://doi.org/10.1016/j.mineng.2020.106586

Cómo citar

APA

Castillo, J. (2024). From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases. Revista Colombiana de Biotecnología, 26(2), 77–96. https://doi.org/10.15446/rev.colomb.biote.v26n2.113613

ACM

[1]
Castillo, J. 2024. From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases. Revista Colombiana de Biotecnología. 26, 2 (dic. 2024), 77–96. DOI:https://doi.org/10.15446/rev.colomb.biote.v26n2.113613.

ACS

(1)
Castillo, J. From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases. Rev. colomb. biotecnol. 2024, 26, 77-96.

ABNT

CASTILLO, J. From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases. Revista Colombiana de Biotecnología, [S. l.], v. 26, n. 2, p. 77–96, 2024. DOI: 10.15446/rev.colomb.biote.v26n2.113613. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/113613. Acesso em: 27 ene. 2025.

Chicago

Castillo, John. 2024. «From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases». Revista Colombiana De Biotecnología 26 (2):77-96. https://doi.org/10.15446/rev.colomb.biote.v26n2.113613.

Harvard

Castillo, J. (2024) «From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases», Revista Colombiana de Biotecnología, 26(2), pp. 77–96. doi: 10.15446/rev.colomb.biote.v26n2.113613.

IEEE

[1]
J. Castillo, «From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases», Rev. colomb. biotecnol., vol. 26, n.º 2, pp. 77–96, dic. 2024.

MLA

Castillo, J. «From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases». Revista Colombiana de Biotecnología, vol. 26, n.º 2, diciembre de 2024, pp. 77-96, doi:10.15446/rev.colomb.biote.v26n2.113613.

Turabian

Castillo, John. «From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases». Revista Colombiana de Biotecnología 26, no. 2 (diciembre 11, 2024): 77–96. Accedido enero 27, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/113613.

Vancouver

1.
Castillo J. From Rainforest to Lab: Electrochemical Biosensing with Colombian Plant Peroxidases. Rev. colomb. biotecnol. [Internet]. 11 de diciembre de 2024 [citado 27 de enero de 2025];26(2):77-96. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/113613

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

250

Descargas

Los datos de descargas todavía no están disponibles.