Publicado
Stress responses induced by pre-germination treatments and their identification based on seed germination patterns
Respuestas al estrés inducidas por tratamientos pre-germinación y su identificación basada en patrones de germinación de semillas
DOI:
https://doi.org/10.15446/rev.colomb.biote.v27n2.114694Palabras clave:
Germination kinetics, germination speed, induced stress memory. mild stress. (en)Cinética de germinación, estrés leve, memoria de estrés inducida, velocidad de germinación. (es)
Descargas
Tomato is an important vegetable crop in the world and the fruit is widely known as food and as a protector of health. Seed priming improves its germination potential, better seedling establishment, and vigorous growth. Seed priming in water or chemical solutions is a pre-germination treatment that induces mild or stressful stress during the early phases of germination. The primed seed builds a ‘priming memory’ necessary to configure an "acquired stress response" and upon subsequent stress exposures, they respond more quickly and robustly. The tomato seeds were primed in water (20 h at 20-21 oC) and in 200 mM NaCl and KNO3 solutions (10 days at 28-29 oC) (stressful condition) to induce stress responses which were characterized in terms of their patterns of germination and velocity of germination, expressed as the time (hours) to 50 per cent germination (T50), when primed seeds were set to germinate in water and wastewater (stressful conditions). Four replicates of 25 seeds on sheets of filter paper in Petri dishes were moistened with 4 mL of distilled water or wastewater and set to germinate (28-29 oC). KNO3 induced the fastest and strongest stress response. The T50 of germination in water (15 h) and wastewater (27 h) and the patterns of germination were different from those induced by the NaCl solution. T50 of seeds germinated in water (41 h) and wastewater (39 h) required more time for the seeds primed in the NaCl solution The induced stress responses did not affect the total germination.
El jitomate, hortaliza importante en el mundo como fruto ampliamente conocido como alimento y protector de la salud. Mediante el remojo de semillas su potencial de germinación y su establecimiento se mejoran y las plántulas crecimiento vigorosamente. El remojo de semillas en agua o soluciones químicas es un tratamiento previo a la germinación que induce un estrés leve o estresante durante las primeras fases de la germinación. La semilla tratada construye una "memoria" necesaria para configurar una "respuesta de estrés adquirida" y, ante exposiciones de estrés posteriores, responde más rápidamente y contundente. Las semillas se trataron en agua (20 h a 20-21 oC) y en soluciones 200 mM de NaCl y KNO3 (10 días a 28-29 oC) (condición estresante) para inducir respuestas de estrés que se caracterizaron por sus patrones y velocidad de germinación, expresada como el tiempo (horas) requerido para el 50% de germinación (T50), al germinar las semillas en agua y aguas residuales (condición estresante). Muestras de 25 semillas (4/condición experimental) sobre papel filtro en cajas Petri, humedecidas con 4 mL de agua o agua residual y germinadas a 28-29 oC. KNO3 indujo la respuesta de estrés más rápida y fuerte. El T50 de germinación en agua (15 h) y aguas residuales (27 h) y los patrones de germinación fueron diferentes a los inducidos por la solución de NaCl. El T50 de semillas germinadas en agua (41 h) y aguas residuales (39 h) requirió más tiempo para estas semillas. Las respuestas de estrés inducidas no afectaron sensiblemente la germinación total.
Referencias
Adhikari, B., Olorunwa, J.O., Barickman, C.T. 2022. Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress. Seeds. 1(2): 74-86; https://doi.org/10.3390/seeds1020007
Al-Ani, A., Bruzau, F., P Raymond, P., Saint-Ges, V. Cleblanc, J., Pradet, A. 1895. Germination, Respiration, and Adenylate Energy Charge of Seeds at Various Oxygen Partial Pressures. Plant Physiology 79(3):885-890. DOI:10.1104/pp.79.3.885
Al-Ani, A., Pradet, A. 1985. ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiology. 79 (3): 879-884. https://www.jstor.org/stable/4269623
Ali, A.S., Elozeiri, A.A. 2017. Metabolic processes during seed germination. Advances in Seed Biology. InTech. DOI: 10.5772/intechopen.70653.
Artola, A., Carrillo-Castañeda, G., García de los Santos, G. 2003. Hydropriming: a strategy to increase Lotus corniculatus L. seed vigor. Seed Science Technology. 31 (2): 455-463.
Artola, A., García de los Santos, G., Carrillo-Castañeda, G. 2003a. A seed vigor test for birdsfoot trefoil (Lotus corniculatus L.). Seed Science Technology. 31: 753-757.
Artola, A., Carrillo-Castañeda, G., García de los Santos, G. 2004. A seed vigor test for Lotus corniculatus L. based on vacuum stress. Seed Science Technology. 32 (2): 573-581.
Asomaning, J.M., Sacandé, M. 2019. Desiccation, germination and water sorption isotherm of Garcinia afzelii Engl. (Clusiaceae) seeds. Research Journal of Seed Science, 12: 1-9. https://scialert.net/abstract/?doi=rjss.2019.1.9
Berrie, A.M.M., Drennan, D.S.H. 1971. The effect of hydration-dehydration on seed germination. New Phytologist. 70:135-142. Adhikari, B., Olorunwa, J.O., Barickman, C.T. 2022. Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress. Seeds. 1(2): 74-86; https://doi.org/10.3390/seeds1020007
Bewley, J.D., Black, M. 1978. Imbibition, germination, and growth. In: Physiology and Biochemistry of Seeds in Relation to Germination. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66668-1_4
Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H. (2013) Seeds: Physiology of development, germination, and dormancy. 3rd Edition, Springer, New York. http://dx.doi.org/10.1007/978-1-4614-4693-4
Bruce, T.J.A., Matthes, M.C., Napier, J.A., Pickett, J.A. 2007. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science. 173: 603–608.
Chachalis, D., Darawsheh, M., Khah, E. M. 2008. Effects of initial seed moisture content, imbibition temperature and seed vigour on germination, electrolyte leakage and seedling growth in plum tomatoes. Journal of Food, Agriculture & Environment. 6 (3-4): 299-304.
Chen, K., Arora, R. 2013. Priming memory invokes seed stress-tolerance, Environmental and Experimental Botany. 94: 33-45. ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2012.03.005. (https://www.sciencedirect.com/science/article/pii/S009884721200069X)
Chen, Z.H., Soltis, D.E. 2020. Evolution of environmental stress responses in plants. Plant Cell and Environment. 43(12):2827-2831. doi: 10.1111/pce.13922. PMID: 33103798.
Coolbear, P., Francis, A., Grierson, D. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artifcially aged tomato seeds. Journal of Experimental Botany 35, 1609Ű1617. doi:10.1093/jxb/35.11.1609.
Corbineau, F. 2022. Oxygen, a key signalling factor in the control of seed germination and dormancy. Seed Science Research 1–11. https://doi.org/10.1017/ S096025852200006X.
Farooq, M., Aziz, T., Basra, S.M.A., Cheema, M.A., Rehman, H. 2008. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal of Agronomy and Crop Science. 194: 161–168.
Farooq, M.S.M.A., Basra, S.M.A., Saleem, B.A., Nafees, M., Chishti, S.A. 2005. Enhancement of tomato seed germination and seedling vigor by osmopriming. Pakistan Journal of Agricultural Science. 42: 36–41.
Farooq, M., Usman, M., Nadeem, F., ur Rehman, H., Wahid, A., Basra, S. M., Siddique, K.H. 2019. Seed priming in field crops: potential benefits, adoption and challenges. Crop and Pasture Science 70(9): 731-771.
Forti, C., Ottobrino, V., Doria, E., Bassolino, L., Laura Toppino, L., Rotino, G.L., Pagano, A., Macovei, A., Balestrazzi, A. Hydropriming applied on fast germinating Solanum villosum Miller seeds: Impact on pre-germinative metabolism. Frontiers in Plant Science. 25 March. 2021. Volume 12 - 2021 | https://doi.org/10.3389/fpls.2021.639336
Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrullahzadeh, S., Moghaddam, M. 2010. Influence of hydro-priming duration on field performance of pinto bean (Phaseolus vulgaris L.) cultivars. African Journal of Agricultural Research. 5 (9): 893-897. Available online ahttp://www.academicjournals.org/AJAR. ISSN 1991-637X © 2010
Ghassemi-Golezani, K., Chadordooz-Jeddi, A., Nasrollahzadeh, S., Moghaddam, M. 2010a. Effects of hydro-priming duration on seedling vigour and grain yield of pinto bean (Phaseolus vulgaris L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 38: 109.
Ghassemi-Golezani, K., Yaghoubian, I., Raei, Y. 2016. The impact of hydro-priming duration on seed invigoration and field emergence of milk thistle. Journal of Biodiversity and Environmental Sciences. 9 (2): 229-234. ISSN: 2220-6663 (press) 2222-3045 (online) http://www.innspub.net.
Harris D., Jones, M. 1997. On-farm seed priming to accelerate germination in rainfed, dryseeded rice. International Rice Research Notes. 22(2):129-178.
He, D., Yang, P. 2013. Proteomics of rice seed germination. Frontiers in Plant Science. 2013;4:246. doi: 10.3389/fpls.2013.00246.
Heydecker, W., Beryl M.G. 1978. Attempts to synchronise seed germination. Acta Horticulturae. 72 DOI 10.17660/ActaHortic.1978.72.8.
Heydecker, W., Gibbins, B.M. 1978. The 'priming' of seeds. Acta Horticulturae. 83:213-224. DOI: 10.17660/ActaHortic.1978.83.29.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., Hincha, D.K., Kunze, R., Mueller-Roeber, B., Rillig, M.C., Rolff, J., Romeis, T., Schmülling, T., Steppuhn, A., van Dongen, J., Whitcomb, S.J., Wurst, S., Zuther, E., Kopka, J. Priming and memory of stress responses in organisms lacking a nervous system. Biological reviews of the Cambridge Philosophical Society. 2016 Nov;91(4):1118-1133. doi: 10.1111/brv.12215. Epub 2015 Aug 20. PMID: 26289992.
Hou, D., Bi, J., Ma, L., Zhang, K., Li, D., Rehmani, M.I.A., Tan, J., Bi, Q., Wei, Y., Liu, G., et al. Effects of soil moisture content on germination and physiological characteristics of rice seeds with different specific gravity. Agronomy. 2022, 12, 500. https://doi.org/ 10.3390/agronomy120205.
Kambona, C.M., Koua, P.A., Léon, J. Ballvora, A. 2023. Stress memory and its regulation in plants experiencing recurrent drought conditions. Theoretical and Applied Genetics. 136:26 https://doi.org/10.1007/s00122-023-04313-1
Khalequzzaman, Ullah, H., Himanshu, S.K., Islam, N.-E-T., Tisarum, R., Cha um, S., Datta, A. 2023. Seed priming improves germination, yield, and water productivity of cotton under drought stress. Journal of Soil Science and Plant Nutrition. 23: 2418–2432 https://doi.org/10.1007/s42729-023-01196-5
Kheyrodin, H., Kheyrodin, S. 2017. Importance of the Tomato as such as medical plant. International Journal of Advanced Research in Biological Sciences. 4(4): 106-115. DOI: http://dx.doi.org/10.22192/ijarbs.2017.04.04.015).
Kimura, S., Sinha, N. Emerging model organisms tomato (Solanum lycopersicum): A model fruit-bearing crop. Cold Spring Harb Protocols; 2008; doi:10.1101/pdb.emo105
Lamers, J., van der Meer, T., Testerink, C. 2020. How plants sense and respond to stressful environments. Plant Physiology. 182(4):1624-1635. doi: 10.1104/pp.19.01464. Epub 2020 Mar 4. PMID: 32132112; PMCID: PMC7140927.
Ling, Y., Serrano, N., Gao, G., Atia, M., Mokhtar, M., Woo, Y.H., Bazin, J., Veluchamy, A., Benhamed, M., Crespi, M., Gehring, C., Reddy, A.S.N., Mahfouz, M.M. 2018. Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany. 69 (10):2659–2675. https://doi.org/10.1093/jxb/ery062
Liu, G., Porterfield, D.M., Li, Y., Klassen, W. 2012. Increased oxygen bioavailability improved vigor and germination of aged vegetable seeds. HortScience horts, 47(12): 1714-1721. Retrieved Oct 13, 2023, from https://doi.org/10.21273/HORTSCI.47.12.1714
Liu, H., Able, A.J., Able, J.A. 2022. Priming crops for the future: rewiring stress memory. Trends in Plant Science. 27 (7): 699-716. https://doi.org/10.1016/j.tplants.2021.11.015 (http://creativecommons.org/licenses/by-nc-nd/4.0/
Liu, W., Liu, K., Chen, D., Zhang, Z., Li, B., El-Mogy, M.M., Tian, S., Chen. T. 2022. Solanum lycopersicum, a model plant for the studies in developmental biology, stress biology and food science. Foods. 2022, 11(16), 2402; https://doi.org/10.3390/foods11162402
Liu, X., Quan, W., Bartels, D. Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. Planta. 2022 Jan 23;255(2):45. doi: 10.1007/s00425-022-03828-z. PMID: 35066685; PMCID: PMC8784359.
Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V.G., Karthikeyan, A., Ramalingam, J. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Science. 2020;21:8258. doi: 10.3390/ijms21218258.
Mauch-Mani, B., Baccelli, I., Luna, E., Flors, V. 2017. Defense priming: an adaptive part of induced resistance. Annual Review of Plant Biology. 68: 485–512.
McDonald, 1999 McDonald, M.B. 1999. Seed deterioration: Physiology, repair and assessment. Seed Science and Technology. 27: 177-237.
Miano, A.C., Augusto, P.E.D. 2018. The Hydration of Grains: A critical review from description of phenomena to process improvements. Food Science and Food Safety. 17 (2): 352-370. DOI: 10.1111/1541-4337.12328.
Nair, A.U., Bhukya, D.P.N., Sunkar, R., Chavali, S., Allu, A.D. 2022. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. Journal of Experimental Botany. 73 (11): 3355–3371. https://doi.org/10.1093/jxb/erac089
Noble, L., Dhankher, O.P., Puthur, J.T. 2023. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory. Physiologia Plantarum. https://doi.org/10.1111/ppl.13881
O'Callaghan, M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology. 100 (13): 5729–5746. https://doi.org/10.1007/s00253-016-7590-9
Omidi, H., Khazaei, F., Hamzi Alvanagh, S., Heidari-Sharifabad, H. 2009. Improvement of seed germination traits in canola (Brassica napus L.) as affected by saline and drought stresses. Plant Ecophysiology. 3:151-158.
Powell, A. A., Matthews S. 1978. The damaging effect of water on dry pea embryos during imbibition. Journal of Experimental Botany. 29 (5): 1215–1229. https://doi.org/10.1093/jxb/29.5.1215
Quinet M., Angosto T., Yuste-Lisbona F.J., Blanchard-Gros R., Bigot S., Martinez J. -P., Lutts S. 2019. Tomato fruit development and metabolism. Frontiers in Plant Science. 10 URL=https://www.frontiersin.org/articles/10.3389/fpls.2019.01554 DOI=10.3389/fpls.2019.01554 ISSN=1664-462X
Ramírez, E., Chaâbene, Z., Hernández-Apaolaza, L., Rekik, M., Elleuch, A., de la Fuente, V. Seed priming to optimize germination in Arthrocnemum Moq. BMC Plant Biology. 22, 527 (2022). https://doi.org/10.1186/s12870-022-03893-2
Reed, R.C., Bradford, K.J., Khanday, I. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity (Edinb). 2022 Jun;128(6):450-459. doi: 10.1038/s41437-022-00497-2. Epub 2022 Jan 10. PMID: 35013549; PMCID: PMC9177656.
Ruttanaruangboworn, A., Chanprasert, W., Tobunluepop, P., Onwimo, D. 2017. Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). Journal of Integrative Agriculture. 16(3): 605–613.
Saleh, M., Akash, M., Ondier, O. 2018. Effects of temperature and soaking durations on the hydration kinetics of hybrid and pureline parboiled brown rice cultivars. Journal of Food Measurement and Characterization. 12 (2): 1369-1377. DOI: 10.1007/s11694-018-9751-2).
Salter, P.J., Darby, R.J. 1976. Synchronization of germination of celery seeds. Annals of Applied Biology. 84(3):415-424.
Sani, E., Herzyk, P., Perrella, G., Colot, V., Amtmann, A. 2013. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biology 14, R59.
Sen, A., Puthur, J.T. Seed priming-induced physiochemical and molecular events in plants coupled to abiotic stress tolerance: an overview. In: Hossain MA, Liu F, Burritt D, Fujita M, Huang B, editors. Priming-mediated stress and cross-stress tolerance in crop plants. Amsterdam: Elsevier; 2020. pp. 303–316. https://doi.org/ 10.1016/B978-0-12-817892-8.00018-0.
Shabbir, I., Shakir, M., Ayub, M., Tahir, M., Tanveer, A., Shahbaz, M., Hussain, M. 2013. Effect of seed priming agents on growth, yield and oil contents of fennel (Foeniculum vulgare Mill.). Advances in Agriculture & Biology. 1:58-62.
Sharma, M., Kumar, P., Verma, V., Sharma, R., Bhargava, B., Irfan, M. 2022. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiology Biochemistry. 179:10-24. doi: 10.1016/j.plaphy.2022.03.004. Epub 2022 Mar 15. PMID: 35305363.
Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., Ahmad, S. Methods of seed priming. In: Hasanuzzaman M, Fotopoulos V, editors. Priming and pretreatment of seeds and seedlings. Singapore: Springer; 2019. pp. 1–10.
Shi, J., Le Maguer, M. 2010. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit. Rev. Biotech., 20(4): 293-334.
Singh, P., Ibrahim, H., Flury, M., Schillinger, W., Knappenberger, T. 2013. Critical water potentials for germination of wheat cultivars in the dryland Northwest USA. Seed Science Research, 23(3): 189-198. doi:10.1017/S0960258513000172.
Smok, M.A., Chojnowski, M., Corbineau, F., Côme, D. 1993. Effects of osmotic treatment on sunflower seed germination in relation with temperature and oxygen, pp. 1033–1038 in Côme, D. and Corbineau, F. (Eds) Fourth international workshop on seeds. Basic and applied aspects of seed biology, vol. 3. Paris, ASFIS.
Sofo, A., Nuzzaci, M., Vitti, A., Tataranni, G., Scopa, A. 2014. Control of biotic and abiotic stresses in cultivated plants by the use of biostimulant microorganisms. In: Improvement of crops in the era of climatic changes, eds P. Ahmad, M. R. Wani, M. M. Azooz, and L. S. Phan Tran (New York, NY: Springer Science+Business Media), 107–117.
Sousaraei, N., Torabi, B., Mashaiekhi, K., Soltani, E., Mousavizadeh, S.J. 2021. Variation of seed germination response to temperature in tomato landraces: An adaptation strategy to environmental conditions. Scientia Horticulturae. 281. 109987, ISSN 0304-4238, https://doi.org/10.1016/j.scienta.2021.109987
Srivastava, A.K., Kumar, J.S., Suprasanna, P. 2021. Seed ‘primeomics’: plants memorize their germination under stress. Biological Reviews. 96: 1723–1743.1723doi: 10.1111/brv.12722
Suo, R., Sandhu, K., Wang, M., You, F., Conner, R., Cober, E., Huo, A. 2023. Soybean (Glycine max L.) seed germination in response towater logging and cold climate: a review on the genetics and molecular mechanisms of resistance to the abiotic stress. Canadian Journal of Plant Science. 103(1): 13-28. https://doi.org/10.1139/cjps-2022-0111
Tao, Q., Lv, Y., Mo, Q., Bai, M., Han, Y., Wang, Y. 2018. Impacts of priming on seed germination and seedling emergence of Cleistogenes songorica under drought stress. Seed Science and Technology. Tao Q, Lv Y, Mo Q, Bai M, Han Y, Wang Y (2018) Impacts of priming on seed germination and seedling emergence of Cleistogenes songorica under drought stress. Seed Science and Technology. 46:239–257. https://doi.org/10.15258/sst.2018.46.2.06
Vidal-Lezama, E., Carrillo-Castañeda, G., Pérez-Mendoza, C. Ortiz-García, E. 2018. Tomato seeds increase its germination speed by oxygenation of imbibition water. Acta Horticulturae. 1205: 299-304 DOI: 10.17660/ActaHortic.2018.1205.35
https://doi.org/10.17660/ActaHortic.2018.1205.35
Yasin, M., Andreasen, C. 2016. Effect of reduced oxygen concentration on the germination behavior of vegetable seeds. Horticulture Environment and Biotechnology. 57: 453–461 (2016). https://doi.org/10.1007/s13580-016-0170-1.
Yuan, Y., Tan, M., Zhou, M., Hassan, M. J., Lin, L., Lin, J., Zhang, Y., Li, Z. 2024. Drought priming‐induced stress memory improves subsequent drought or heat tolerance via activation of γ‐aminobutyric acid‐regulated pathways in creeping bentgrass. Plant Biology. https://doi.org/10.1111/plb.13636
Zhang H., Zhu J., Gong Z., Zhu J.-K. Abiotic stress responses in plants. Nature Reviews Genetics 2022;23:104–119. doi: 10.1038/s41576-021-00413-0
Zhang, H., Liu, S., Ren, T., Niu, M., Liu, X., Liu, C., Wang, H., Yin, W., Xia, X. 2023. Crucial abiotic stress regulatory network of NF-Y transcription factor in plants. International Journal of Molecular Science. 2023;24:4426. doi: 10.3390/ijms24054426.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).





