Publicado

2025-06-01

Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales

Production of fungal enzymes from M6P21 using pineapple (Ananas comosus) and passion fruit (Passiflora edulis) waste: Biotechnological utilization for the valorization of agro-industrial by products

DOI:

https://doi.org/10.15446/rev.colomb.biote.v27n1.117486

Palabras clave:

Enzimas fúngicas, Ananas comosus, Passiflora edulis, Aspergillus niger, Azucares reductores. (es)
Fungal enzymes, Ananas comosus, Passiflora edulis, Aspergillus niger, Reducing sugars. (en)

Descargas

Autores/as

Este estudio evaluó la actividad pectinolítica de las enzimas producidas por el aislado Aspergillus niger M6P21 (P. Micheli, 1729), utilizando albedo de piña, albedo de maracuyá y una combinación de ambos como únicas fuentes de carbono, con pectina comercial como control. El aislado M6P21 fue obtenido de un cultivo de piña en el distrito Sarandelo de Lorica, Córdoba, Colombia. La producción enzimática se evaluó en cuatro tratamientos: albedo de piña, albedo de maracuyá, su mezcla y pectina comercial. La actividad pectinolítica se monitoreó durante tres días, y los resultados se expresaron como concentración de azúcares reductores. Los hallazgos demostraron una actividad enzimática notable: 0,2816 g/L para el albedo de piña, 0,2740 g/L para el albedo de maracuyá, 0,3923 g/L para la mezcla de sustratos y 0,3046 g/L para la pectina comercial. El análisis estadístico mediante ANOVA arrojó un valor – p  de 0,9383, lo que indica que no hubo diferencias significativas entre los tratamientos. Estos resultados resaltan el potencial de Aspergillus niger M6P21 para la producción de pectinasas a partir de subproductos agroindustriales, ofreciendo un enfoque biotecnológico sostenible para la valorización de residuos frutales en las industrias alimentaria y biotecnológica.

This study evaluated the pectinolytic activity of enzymes produced by the Aspergillus niger M6P21 isolate (P. Micheli, 1729), using pineapple albedo, passion fruit albedo, and a combination of both as sole carbon sources, with commercial pectin serving as the control. The M6P21 isolate was isolated from a pineapple crop in the Sarandelo district of Lorica, Córdoba, Colombia. Enzyme production was assessed across four treatments: pineapple albedo, passion fruit albedo, their mixture, and commercial pectin. Pectinolytic activity was monitored over three days, with results expressed as reducing sugar concentration. The findings demonstrated notable enzymatic activity: 0.2816 g/L for pineapple albedo, 0.2740 g/L for passion fruit albedo, 0.3923 g/L for the mixed substrates, and 0.3046 g/L for commercial pectin. Statistical analysis using ANOVA yielded a p-value of 0.9383, indicating no significant differences among the treatments. These results highlight the potential of Aspergillus niger M6P21 for pectinase production from agro-industrial by-products, offering a sustainable biotechnological approach for the valorization of fruit waste in the food and biotechnology industries.

Referencias

Abarca, M. L. (2000). Taxonomía e identificación de especies implicadas en la aspergilosis nosocomial. Rev Iberoam Micol, 19, s79–s84.

Abdullahi, N., Atiku, M. K., and Umar, N. B. (2021). Los roles de la enzima en fo procesamiento de od-una visión general. revista de ciencias fudma 5, 157–164. doi:10.33003/fjs-2021-0501-549

Adedayo, M. R., Mohammed, M. T., Ajiboye, A. E., and Abdulmumini, S. A. (2021). Pectinolytic activity of aspergillus niger and Aspergillus flavus grown on grapefruit (citrus Parasidis) peel in solid state fermentation. Global Journal of Pure and Applied Sciences 27, 93–105. doi: 10.4314/GJPAS.V27I2.2

Adedeji, O. E., & Ezekiel, O. O. (2019). Pretreatment of selected peels for polygalacturonase production by Aspergillus awamori CICC 2040: Purification and application in mango juice extraction. Bioresource Technology Reports, 7(August), 100306. https://doi.org/10.1016/j.biteb.2019.100306

Agronet (2024a). Estadísticas home: Comparativo de Área, Producción, Rendimiento y Participación Departamental por Cultivo de Maracuya. 1–1.

Agronet (2024b). Estadísticas home: Comparativo de Área, Producción, Rendimiento y Participación Departamental por Cultivo de Piña. Available at: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=3 (Accessed November 1, 2024).

Ajayi, A. M., Coker, A. I., Oyebanjo, O. T., Adebanjo, I. M., & Ademowo, O. G. (2022). Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. Journal of Ethnopharmacology, 282(April 2021), 114576. https://doi.org/10.1016/j.jep.2021.114576

Arauz Cavallini, L. F. (1998). Fitopatología: un enfoque agroecologico. In Editorial de Costa Rica.

Baltussen, T. J. H., Zoll, J., Verweij, P. E., & Melchers, W. J. G. (2020). Molecular Mechanisms of Conidial Germination in Aspergillus spp. Microbiology and Molecular Biology Reviews, 84(1). https://doi.org/10.1128/mmbr.00049-19

Benoit, I., Coutinho, P. M., Schols, H. A., Gerlach, J. P., Henrissat, B., & de Vries, R. P. (2012). Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics, 13(1). https://doi.org/10.1186/1471-2164-13-321

Boukid, F., Ganeshan, S., Wang, Y., Tülbek, M. Ç., and Nickerson, M. T. (2023). Bioengineered Enzymes and Precision Fermentation in the Food Industry. International Journal of Molecular Sciences 2023, Vol. 24, Page 10156 24, 10156. doi: 10.3390/IJMS241210156

Cavalieri de Alencar Guimarães, N., Glienke, N. N., Silva Galeano, R. M., Ruller, R., Zanoelo, F. F., Masui, D. C., & Giannesi, G. C. (2022). Polygalacturonase from Aspergillus japonicus (PGAj): Enzyme production using low-cost carbon source, biochemical properties and application in clarification of fruit juices. Biocatalysis and Agricultural Biotechnology, 39(August 2021). https://doi.org/10.1016/j.bcab.2021.102233

Chergui, D., Akretche-Kelfat, S., Lamoudi, L., Al-Rshaidat, M., Boudjelal, F., & Ait-Amar, H. (2021). Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. Saudi Journal of Biological Sciences, 28(12), 7134–7141. https://doi.org/10.1016/j.sjbs.2021.08.013

Ciriminna, R., Fidalgo, A., Scurria, A., Ilharco, L. M., & Pagliaro, M. (2022). Pectin: New science and forthcoming applications of the most valued hydrocolloid. Food Hydrocolloids, 107483. https://doi.org/10.1016/j.foodhyd.2022.107483

DANE. (2016). cultivo de Piña en Colombia. In Boletin mensuall insumos y factores asociados a la produccion agropecuaria (Issue 54). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_dic_2016.pdf

Dumorné, K., Córdova, D. C., Astorga-Eló, M., & Renganathan, P. (2017). Extremozymes: A potential source for industrial applications. Journal of Microbiology and Biotechnology, 27(4), 649–659. https://doi.org/10.4014/jmb.1611.11006

Eboigbe, L., and Omoregbe, M. O. (2020). Genetic variability and vegetative compatibility in Aspergillus niger isolated from various food substances in Benin City Nigeria. Journal of Applied Sciences and Environmental Management 24, 2161–2165. doi: 10.4314/JASEM.V24I12.23

Garcia-Quinto, E., Aranda-Cañada, R., García-García, P., and Fernández-Lorente, G. (2023). Use of Potential Immobilized Enzymes for the Modification of Liquid Foods in the Food Industry. Processes 2023, Vol. 11, Page 1840 11, 1840. doi: 10.3390/PR11061840

Granado, W., & Aguillón, D. (2019). Cadena de la Piña. In Ministerio de agricultura y desarrollo rural.

Grebechova, R., & Prieto contreras, L. (2006). Biosíntesis de las enzimas pectolíticas a partir de hongos Aspergillus niger y Aspergillus foetidus para aplicación en industria de alimentos. Revista de Investigación Universidad La Salle, 6(1657–6772), 153–162.

Kirimura, K., & Yoshioka, I. (2019). Citric Acid. Comprehensive Biotechnology, 158–165. https://doi.org/10.1016/B978-0-444-64046-8.00157-9

Krusong, W., Pothimon, R., & Vichitraka, A. (2019). Inhibitory impact of vapor-phase ethanol on conidia germination and mycelial growth of Aspergillus fumigatus on bread. Food Control, 95(July 2018), 165–169. https://doi.org/10.1016/j.foodcont.2018.08.010

Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S., & Liu, S. (2020). Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 44(September), 107630. https://doi.org/10.1016/j.biotechadv.2020.107630

Li, Q., Ray, C. S., Callow, N. V., Loman, A. A., Islam, S. M. M., & Ju, L. K. (2020). Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme and Microbial Technology, 134(November), 109476. https://doi.org/10.1016/j.enzmictec.2019.109476

Lozano, A., & López, E. (2001). Endopoligalacturonasa y pectinesterasa de Aspergillus Niger Endopolygalacturonase and pectinesterase from Aspergillus Niger. REVISTA COLOMBIANA DE BIOTECNOLOGÍA, 2, 85–91.

Madigan, M. T., Parker, J., & Martinko, john M. (2003). microbiología - biología de los microorganismos (Brock) 10ed.pdf.

Mahmoodi, M., Najafpour, G. D., & Mohammadi, M. (2017). Production of pectinases for quality apple juice through fermentation of orange pomace. Journal of Food Science and Technology 2017 54:12, 54(12), 4123–4128. https://doi.org/10.1007/S13197-017-2829-8

Marzo, C., Díaz, A. B., Caro, I., & Blandino, A. (2019). Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. Waste Management and Research, 37(2), 149–156. https://doi.org/10.1177/0734242X18798699

MinAgricultura. (2020). Cadena de Pasifloras. Indicadores e instrumentos. Primer trimestre 2020. 14. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2018-09-30 Cifras Sectoriales.pdf

Mohammadi, Z. B., Zhang, F., Kharazmi, M. S., and Jafari, S. M. (2023). Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit Rev Food Sci Nutr 63, 11351–11369. doi: 10.1080/10408398.2022.2092719

Neves Junior, A., Mansoldo, F. R. P., Godoy, M. G., Firpo, R. M., Cedrola, S. M. L., & Vermelho, A. B. (2021). Production of an endo-polygalacturonase from Fusarium proliferatum isolated from agro-industrial waste. Biocatalysis and Agricultural Biotechnology, 38(April), 102199. https://doi.org/10.1016/j.bcab.2021.102199

Nosalj, S., Šimonovičová, A., and Vojtková, H. (2021). Enzyme production by soilborne fungal strains of Aspergillus niger isolated from different localities affected by mining. IOP Conf Ser Earth Environ Sci 900, 012027. doi: 10.1088/1755-1315/900/1/012027

Osorio, M., & Cando, Y. (2017). Actividad pectinolitica del hongo aspergillus sp aislados a partir de residuos de maracuya (Passiflora edulis). Universidad de Cordoba.

Ramos Galeano, R. A. (2013). Evaluación de la capacidad pectinolitica de hongos del género asperguillus sp. aislados de plantas de pomelo (Citrus grandis,) en el municipio de Moñitos – Córdoba. Universidad de Cordoba.

Saif, F. A., Yaseen, S. A., Alameen, A. S., Mane, S. B., & Undre, P. B. (2021). Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV–Vis spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 246, 119010. https://doi.org/10.1016/j.saa.2020.119010

Sandri, I. G., & da Silveira, M. M. (2018). Production and application of pectinases from aspergillus niger obtained in solid state cultivation. Beverages, 4(3). https://doi.org/10.3390/beverages4030048

Satapathy, S., Rout, J. R., Kerry, Rout George Thatoi, H., & Sahoo, S. L. (2020). Biochemical Prospects of Various Microbial Pectinase and Pectin: An Approachable Concept in Pharmaceutical Bioprocessing. 117, 7, 17. https://doi.org/10.3389/fnut.2020.00117

Sharma, G., and Vimal, A. (2023). Industrial Processing of Commercially Significant Enzymes. Recent Innovations in Chemical Engineering 16, 3–15. doi: 10.2174/2405520416666230301112734

Sharma, V. ;, Tsai, M.-L. ;, Nargotra, P. ;, Chen, C.-W. ;, Kuo, C.-H. ;, Sun, P.-P. ;, et al. (2022). Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts 2022, Vol. 12, Page 1373 12, 1373. doi: 10.3390/CATAL12111373

Shet, A. R., Muhsinah, A. Bin, Alsayari, A., Achappa, S., Desai, S. V., Mahnashi, M. H., et al. (2022). Media Optimization by Response Surface Methodology for the Enhanced Production of Acidic Extracellular Pectinase by the Indigenously Isolated Novel Strain Aspergillus cervinus ARS2 Using Solid-State Fermentation. Fermentation 2022, Vol. 8, Page 485 8, 485. doi: 10.3390/FERMENTATION8100485

Vaz, R. P., Vici, A. C., Teixeira de Moraes Polizeli, M. de L., Magalhães, P. O., & Filho, E. X. F. (2021). Immobilization studies of a pectinase produced by Aspergillus terreus. Biotechnology and Applied Biochemistry, 68(1), 197–208. https://doi.org/10.1002/bab.2004

Viayaraghavan, P., Jeba Kumar, S., Valan Arasu, M., & Al-Dhabi, N. A. (2019). Simultaneous production of commercial enzymes using agro industrial residues by statistical approach. Journal of the Science of Food and Agriculture, 99(6), 2685–2696. https://doi.org/10.1002/jsfa.9436

Wagh, V., Patel, H., Patel, N., Vamkudoth, K. R., and Ajmera, S. (2022). Pectinase Production by Aspergillus niger and its Applications in Fruit Juice Clarification. J Pure Appl Microbiol 16, 2724–2737. doi: 10.22207/JPAM.16.4.43

Wei, S., Liu, K., Ji, X., Wang, T., and Wang, R. (2021). Application of enzyme technology in biopulping and biobleaching. Cellulose 2021 28:16 28, 10099–10116. doi: 10.1007/S10570-021-04182-1

Weng, Y., Li, Y., Chen, X., Song, H., and Zhao, C. X. (2024). Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Crit Rev Food Sci Nutr 64, 7941–7958. doi: 10.1080/10408398.2023.2193982

Zhong, L., Li, X., Duan, M., Song, Y., He, N., & Che, L. (2021). Impacts of high hydrostatic pressure processing on the structure and properties of pectin. Lwt, 148(May), 111793. https://doi.org/10.1016/j.lwt.2021.11179.

Cómo citar

APA

Osorio Diaz, M. C., Oviedo Zumaqué, L. E. & Durango Castilla, L. V. (2025). Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales. Revista Colombiana de Biotecnología, 27(1), 49–62. https://doi.org/10.15446/rev.colomb.biote.v27n1.117486

ACM

[1]
Osorio Diaz, M.C., Oviedo Zumaqué, L.E. y Durango Castilla, L.V. 2025. Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales. Revista Colombiana de Biotecnología. 27, 1 (jun. 2025), 49–62. DOI:https://doi.org/10.15446/rev.colomb.biote.v27n1.117486.

ACS

(1)
Osorio Diaz, M. C.; Oviedo Zumaqué, L. E.; Durango Castilla, L. V. Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales. Rev. colomb. biotecnol. 2025, 27, 49-62.

ABNT

OSORIO DIAZ, M. C.; OVIEDO ZUMAQUÉ, L. E.; DURANGO CASTILLA, L. V. Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales. Revista Colombiana de Biotecnología, [S. l.], v. 27, n. 1, p. 49–62, 2025. DOI: 10.15446/rev.colomb.biote.v27n1.117486. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/117486. Acesso em: 28 dic. 2025.

Chicago

Osorio Diaz, Mauren Cecilia, Luis Eliecer Oviedo Zumaqué, y Licet Vanessa Durango Castilla. 2025. «Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales». Revista Colombiana De Biotecnología 27 (1):49-62. https://doi.org/10.15446/rev.colomb.biote.v27n1.117486.

Harvard

Osorio Diaz, M. C., Oviedo Zumaqué, L. E. y Durango Castilla, L. V. (2025) «Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales», Revista Colombiana de Biotecnología, 27(1), pp. 49–62. doi: 10.15446/rev.colomb.biote.v27n1.117486.

IEEE

[1]
M. C. Osorio Diaz, L. E. Oviedo Zumaqué, y L. V. Durango Castilla, «Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales», Rev. colomb. biotecnol., vol. 27, n.º 1, pp. 49–62, jun. 2025.

MLA

Osorio Diaz, M. C., L. E. Oviedo Zumaqué, y L. V. Durango Castilla. «Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales». Revista Colombiana de Biotecnología, vol. 27, n.º 1, junio de 2025, pp. 49-62, doi:10.15446/rev.colomb.biote.v27n1.117486.

Turabian

Osorio Diaz, Mauren Cecilia, Luis Eliecer Oviedo Zumaqué, y Licet Vanessa Durango Castilla. «Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales». Revista Colombiana de Biotecnología 27, no. 1 (junio 4, 2025): 49–62. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/117486.

Vancouver

1.
Osorio Diaz MC, Oviedo Zumaqué LE, Durango Castilla LV. Producción de enzimas fúngicas M6P21 a partir de residuos de piña (Ananas Comosus) y maracuyá (Passiflora Edulis): Aprovechamiento biotecnológico para la valorización de subproductos agroindustriales. Rev. colomb. biotecnol. [Internet]. 4 de junio de 2025 [citado 28 de diciembre de 2025];27(1):49-62. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/117486

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

5761

Descargas

Los datos de descargas todavía no están disponibles.