Celda de electrobiorremediación utilizada para el desarrollo de las experiencias en las que se aplicó el campo eléctrico con rotación de la polaridad cada 4 días

Publicado

2025-12-01

Electrobiorremediación de suelos contaminados con HAP

Electrobioremedation of HAPs contaminated soil

DOI:

https://doi.org/10.15446/rev.colomb.biote.v27n2.118774

Palabras clave:

campo eléctrico, bacterias, hidrocarburos poliaromáticos (es)
electric field, bacteria, polyaromatic hydrocarbons (en)

Descargas

Autores/as

El  consumo de combustibles a nivel mundial ha provocado un aumento en los derrames de petróleo impactando negativamente el medio ambiente, especialmente en el suelo. La contaminación por hidrocarburos, particularmente los HAPs, es una preocupación debido a su toxicidad. Este estudio se centró en evaluar la electrobiorremediación combinada con bioestimulación para degradar HAPs en un suelo de la Patagonia crónicamente contaminado por una explotación petrolera convencional. La investigación fue por un periodo de 60 días, utilizando 600 g de suelo provenientes de un sitio impactado con hidrocarburos, en cubas con y sin campo eléctrico constante (0,5 V/cm, con inversión de polaridad cada 4 días), y con o sin la adición de nutrientes específicos (urea y fosfato monopotásico en una relación C:N:P de 100:10:1). Se monitoreó pH, la conductividad eléctrica, humedad, bacterias degradadoras de hidrocarburos y concentración de HAPs por HPLC y metales pesados. Los resultados mostraron que la aplicación del campo eléctrico mejoró la biodegradación de HAPs, logrando hasta un 67,88% de reducción en los sistemas sin nutrientes, en contraste con el 38,59% observado en los controles. La mayor degradación se observó en HAPs de 2 y 3 anillos aromáticos, coincidiendo con un incremento en el número de bacterias en los sistemas electroestimulados. No obstante, la adición de nutrientes no generó el impacto positivo esperado, e incluso en ciertos casos, el aumento del pH por la urea afectó negativamente la actividad microbiana. Esto destaca el potencial de esta técnica para la recuperación de ecosistemas de suelos contaminados con petróleo.

Global fuel consumption has led to an increase in oil spills, negatively impacting the environment, especially the soil. Hydrocarbon contamination, particularly PAHs, is a concern due to its toxicity. This study focused on evaluating electrobioremediation combined with biostimulation to degrade PAHs in a Patagonian soil chronically contaminated by conventional oil exploitation. Experiments lasted 60 days, using cubes with and without a constant electric field (0.5 V/cm, with polarity reversal every 4 days), and with or without the addition of specific nutrients (urea and monopotassium phosphate in a C:N:P ratio of 100:10:1). pH, electrical conductivity, humidity, hydrocarbon-degrading bacteria, and PAH concentrations were monitored by HPLC and heavy metals. The results showed that the application of the electric field enhanced PAH biodegradation, achieving up to 67.88% reduction in systems without nutrients, in contrast to the 38.59% observed in the control systems. The greatest degradation was observed in PAHs with two and three aromatic rings, coinciding with an increase in the number of bacteria in the electrostimulated systems. However, the addition of nutrients did not have the expected positive impact, and in some cases, the increased pH caused by urea negatively affected microbial activity. This highlights the potential of this technique for the recovery of ecosystems in oil-contaminated soils.

Referencias

Abdul Rahman, N.S.N., Abdul Hamid, N.W., Nadarajah, K. (2021). Effects of abiotic stress on soil microbiome. International Journal of Molecular Sciences 22 (16), 9036.

Acuña AJ, Pucci OH, Pucci GN. 2012. Effect of nitrogen deficiency in the biodegradation of aliphatic and aromatic hydrocarbons in patagonian contaminated soil. International Journal of Research and Reviews in Applied Sciences.11 (3), 479-485

Ambaye, T. G., Vaccari, M., Franzetti, A., Prasad, S., Formicola, F., Rosatelli, A., ... & Rtimi, S. (2023). Microbial electrochemical bioremediation of petroleum hydrocarbons (PHCs) pollution: Recent advances and outlook. Chemical Engineering Journal, 452:139372.

Aravind Kumar, J., Krithiga, T., Sathish, S., Annam Renita, A., Prabu, D., Lokesh, S., Geetha, R., Kartick, Raja Namasivayam, S., Sillanpaa, M. (2022). Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Science Total Environmental 831:154808.

ASTM D 1428. (1982). Tentative Methods of Test for Sodium and Potassium Ions in Industrial Water and Water-Formed Deposits by Flame Photometry. 1 de Agosto del 2000

ASTM D-511 (2021) Standard Test Methods for Calcium and Magnesium In Water. 6 de diciembre del 2021

Behera, I.D., Nayak, M., Biswas, S., Meikap, B.C., Sen, R. 2021. Enhanced biodegradation of total petroleum hydrocarbons by implementing a novel two-step bioaugmentation strategy using indigenous bacterial consortium. Journal of Environmental Management 292:112746.

Budiyanto, F., Thukair, A., Al-Momani, M., Musa, M. M., & Nzila, A. (2018). Characterization of halophilic bacteria capable of efficiently biodegrading the high-molecular-weight polycyclic aromatic hydrocarbon pyrene. Environmental Engineering Science, 35 (6), 616-626.

Cameselle, C., Reddy, K. R. (2022). Electrobioremediation: Combined electrokinetics and bioremediation technology for contaminated site remediation. Indian Geotechnical Journal, 52 (5)1205-1225.

Chen, C. H., Liu, P. W. G., & Whang, L. M. (2, 019). Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments. Chemosphere, 233, 843-851.

EPA 1664 (2010). U.S. Environmental Protection Agency. N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-Polar Material) by Extraction and Gravimetry. Febrero del 2010

EPA 350.1 (1993) U.S. Environmental Protection Agency. EPA Method 350.1: Determination of Ammonia Nitrogen by Semi-Automated Colorimetry

EPA 352.1 (1971) U.S. Environmental Protection Agency. Nitrogen, nitrate (colorimetrics, Brucine) by spectrophotometer.

EPA 7000B,2007. U.S. Environmental Protection Agency .SW-846 Test Method 7000B: Flame Atomic Absorption Spectrophotometry. Febrero del 2007

EPA 9040C (2004) U.S. Environmental Protection Agency. Test Method 9040C: pH Electrometric Measurement. Noviembre del 2004

Fu, X. G., Shi, K., Xue, J. L., Chen, C., Bai, Y., Qiao, Y. L., Yu, H. (2021). Systematic adsorption process of petroleum hydrocarbon by immobilised petroleum-degradation bacteria system in degradation pathways. Petroleum Science 18(5), 1543-1550.

Gidudu, B., & Chirwa, E. M. (2022). The role of pH, electrodes, surfactants, and electrolytes in electrokinetic remediation of contaminated soil. Molecules, 27 (21), 7381.

Gill, R.T., Harbottle, M.J., Smith, J.W.N., Thornton, S.F. (2014). Elec- trokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107(1), 31–42.

Hamed, J. T., & Bhadra, A. (1997). Influence of current density and pH on electrokinetics. Journal of Hazardous materials, 55 (3), 279-294.

Han, X., Hu, H., Shi, X., Zhang, L., He, J. (2017). Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere 172 (2), 286–293.

Haritash, A.K., Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials 169 (1-3), 1-15.

Jagaba, A.H., Kutty, S.R.M., Lawal, I. M., Birniwa, A.H., Affam, A.C., Yaro, N.S.A., Usman, A.K., Umaru, I., Abubakar, S., Noor, A., Soja, U.B., Yakubu, A.S. (2022). Circular economy potential and contributions of petroleum industry sludge utilization to environmental sustainability through engineered processes-A review. Cleaner and Circular Bioeconomy 3:100029.

Johnsen, A.R., Wick, L.Y., Harms, H. (2005). Principles of microbial PAH-degradation in soil, Environmental Pollution 133 (1), 71–84.

Karbassi, A.R., Tajziehchi, S., Afshar, S. (2015). An investigation on heavy metals in soils around oil field area. Global Journal of Environmental Science and Management 1 (4), 275-282.

Krzyszczak, A., Czech, B. (2021). Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Science of The Total Environment. 788:147738

Li, C., Cui, C., Zhang, J., Shen, J., He, B., Long, Y., Ye, J. (2023). Biodegration of petroleum hydrocarbons-based pollutants in contaminated soil by exogenous effective microorganisms and indigenous microbiome. Ecotoxicology and Environmental Safety 253:114673.

Li, F., Guo, S., Wang, S., Zhao, M. (2020). Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. Chemosphere 254:126880.

Locatelli, A., Spor, A., Jolivet, C., Piveteau, P., Hartmann, A. (2013). Biotic and abiotic soil properties influence survival of Listeria monocytogenes in Soil. PloS One journal.pone. 8 (10), 75969

Lukić, B., Panico, A., Huguenot, D., Fabbricino, M., van Hullebusch, E.D., Esposito, G. (2016). Evaluation of PAH removal efficiency in an artificial soil amended with different types of organic wastes. Euro-Mediterranean Journal for Environmental Integration 15 (1), 1-11

Maliszewska-Kordybach, B., Smreczak, B., Klimkowicz-Pawlas, A. (2013). The levels and composition of persistent organic pollutants in alluvial agriculture soils affected by flooding. Environmental Monitoring and Assessment 185 (12), 9935–9948.

Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Current microbiology, 43: 328-335.

Pucci, G.N., Pucci, O.H. (2003). Biodegradabilidad de componentes de mezclas naturales de hidrocarburos previamente sometidas a Landfarming. Revista Argentina de Microbiología 35 (2), 62-68.

Reasoner, D. J., Geldreich, E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and environmental microbiology, 49 (1), 1-7.

SM 4500 NO2 (1992) Standart method. Turbidimetrics method.

SM 4500-C (1992) Standart method. Turbidimetrics method.

SM 4500-E (1992) Standart method. Turbidimetrics method.

Soghandi, B., & Salimi, F. (2024). Study on amendment of rapeseed meal, soybean meal, and NPK fertilizer as biostimulants in bioremediation of diesel-contaminated soil by autochthonous microorganisms. Soil and Sediment Contamination: An International Journal, 33(4), 430-450.

Virkutyte, J., Sillanpää, M., & Latostenmaa, P. (2002). Electrokinetic soil remediation—critical overview. Science of the total environment, 289 (2), 97-121

Widera, B., Tyszkiewicz, N., Truu, J., Rutkowski, P., Młynarz, P., & Pasternak, G. (2024). Relationship between biodiversity and power generated by anodic bacteria enriched from petroleum-contaminated soil at various potentials. International Biodeterioration & Biodegradation, 194:105849.

Xue, P. P., Carrillo, Y., Pino, V., Minasny, B., & McBratney, A. B. (2018). Soil properties drive microbial community structure in a large scale transect in Southeastern Australia. Scientific reports, 8 (1), 11725.

Cómo citar

APA

Acuña, A. J., Gutierrez, M., Tomas, G. & Pucci, G. N. (2025). Electrobiorremediación de suelos contaminados con HAP . Revista Colombiana de Biotecnología, 27(2), 42–51. https://doi.org/10.15446/rev.colomb.biote.v27n2.118774

ACM

[1]
Acuña, A.J., Gutierrez, M., Tomas, G. y Pucci, G.N. 2025. Electrobiorremediación de suelos contaminados con HAP . Revista Colombiana de Biotecnología. 27, 2 (dic. 2025), 42–51. DOI:https://doi.org/10.15446/rev.colomb.biote.v27n2.118774.

ACS

(1)
Acuña, A. J.; Gutierrez, M.; Tomas, G.; Pucci, G. N. Electrobiorremediación de suelos contaminados con HAP . Rev. colomb. biotecnol. 2025, 27, 42-51.

ABNT

ACUÑA, A. J.; GUTIERREZ, M.; TOMAS, G.; PUCCI, G. N. Electrobiorremediación de suelos contaminados con HAP . Revista Colombiana de Biotecnología, [S. l.], v. 27, n. 2, p. 42–51, 2025. DOI: 10.15446/rev.colomb.biote.v27n2.118774. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/118774. Acesso em: 28 dic. 2025.

Chicago

Acuña, Adrián J., Maximiliano Gutierrez, German Tomas, y Graciela Natalia Pucci. 2025. «Electrobiorremediación de suelos contaminados con HAP ». Revista Colombiana De Biotecnología 27 (2):42-51. https://doi.org/10.15446/rev.colomb.biote.v27n2.118774.

Harvard

Acuña, A. J., Gutierrez, M., Tomas, G. y Pucci, G. N. (2025) «Electrobiorremediación de suelos contaminados con HAP », Revista Colombiana de Biotecnología, 27(2), pp. 42–51. doi: 10.15446/rev.colomb.biote.v27n2.118774.

IEEE

[1]
A. J. Acuña, M. Gutierrez, G. Tomas, y G. N. Pucci, «Electrobiorremediación de suelos contaminados con HAP », Rev. colomb. biotecnol., vol. 27, n.º 2, pp. 42–51, dic. 2025.

MLA

Acuña, A. J., M. Gutierrez, G. Tomas, y G. N. Pucci. «Electrobiorremediación de suelos contaminados con HAP ». Revista Colombiana de Biotecnología, vol. 27, n.º 2, diciembre de 2025, pp. 42-51, doi:10.15446/rev.colomb.biote.v27n2.118774.

Turabian

Acuña, Adrián J., Maximiliano Gutierrez, German Tomas, y Graciela Natalia Pucci. «Electrobiorremediación de suelos contaminados con HAP ». Revista Colombiana de Biotecnología 27, no. 2 (diciembre 1, 2025): 42–51. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/118774.

Vancouver

1.
Acuña AJ, Gutierrez M, Tomas G, Pucci GN. Electrobiorremediación de suelos contaminados con HAP . Rev. colomb. biotecnol. [Internet]. 1 de diciembre de 2025 [citado 28 de diciembre de 2025];27(2):42-51. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/118774

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

393

Descargas

Los datos de descargas todavía no están disponibles.