Principal component analysis (PCA) of Cinchona hybrids ISSR data, PC1 accounted for 53.43% and PC2 for 31.29% of variance.

Publicado

2025-12-01

ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro

Marcadores ISSR como herramienta para distinguir genotipos de híbridos de Cinchona propagados in vitro y ex vitro

DOI:

https://doi.org/10.15446/rev.colomb.biote.v27n2.119087

Palabras clave:

Cinchona, ISSR, Molecular identification, Molecular markers (en)
Cinchona, ISSR, Identificación Molecular, Marcadores Moleculares (es)

Descargas

Autores/as

The differentiation of Cinchona spp. hybrids genotypes are challenging due to their shared origins and morphological similarities. This study utilized ISSR (Inter Simple Sequence Repeat) markers to distinguish between genotypes of Cinchona spp.: LF40, LC29, LF74, LF74GB, and LF211 maintained in vitro and ex vitro in Colombia. Genomic DNA was extracted from the plant materials, and eight ISSR primers were used for PCR amplification. In total 61 loci were amplified, of which 37 (60.92%) were polymorphic. The total number of loci per primer ranged from 5 to 12, with an average of 7.62, and polymorphic loci varied from 3 to 6, averaging 4.62 per primer. Cluster analysis based on the unweighted pair group method with arithmetic mean (UPGMA) grouped the genotypes into distinct clusters, showing genetic differences. Principal coordinate analysis (PCA) confirmed the clustering patterns, further distinguishing the genotypes despite their shared origins. The primer ISSR4 was the most effective, with the highest polymorphism rate (75%) and PIC value (0.473), followed by ISSR6 which had a polymorphism rate of 71% and a PIC value of 0.426, both primers allowed the identification of a group of plants under field conditions from in vitro cultures, with unknown genotype origin. As a result, it was possible to confirm a cluster of plants belonging to the LF40 genotype using only two primers. The results demonstrate the genetic distinctiveness of the selected Cinchona genotypes and underscore the utility of ISSR markers as a reliable tool for identifying genetic differences of in vitro and ex vitro Cinchona plant selections.

La diferenciación de genotipos híbridos de Cinchona spp.  es un desafío debido a sus orígenes compartidos y similitudes morfológicas. En este estudio se utilizaron marcadores ISSR para distinguir entre los genotipos de Cinchona spp.: LF40, LC29, LF74, LF74GB y LF211, mantenidos en condiciones in vitro y ex vitro en Colombia. Se extrajo ADN genómico de los materiales vegetales y se utilizaron ocho cebadores ISSR para la amplificación por PCR. En total, se amplificaron 61 loci, de los cuales 37 (60,92%) fueron polimórficos. El número total de loci por cebafdor varió de 5 a 12, con un promedio de 7,62, y los loci polimórficos variaron de 3 a 6, con un promedio de 4,62 por cebador. El análisis de conglomerados basado en el método de grupos de pares no ponderados con media aritmética (UPGMA) agrupó los genotipos en distintos clusters, mostrando diferencias genéticas. El análisis de coordenadas principales (PCA) confirmó los patrones de agrupamiento, distinguiendo aún más los genotipos a pesar de sus orígenes compartidos. El cebador ISSR4 fue el más efectivo, con la mayor tasa de polimorfismo (75%) y valor PIC (0.473), seguido del ISSR6 que tuvo una tasa de polimorfismo del 71% y un valor PIC de 0.426, ambos cebadores permitieron la identificación de un grupo de plantas en condiciones de campo a partir de cultivos in vitro, con origen genotípico desconocido. Como resultado, fue posible confirmar un grupo de plantas pertenecientes al genotipo LF40 utilizando sólo dos cebadores. Los resultados demuestran la distinción genética de los genotipos de Cinchona seleccionados y subrayan la utilidad de los marcadores ISSR como una herramienta confiable para identificar diferencias genéticas de selecciones de plantas de Cinchona in vitro y ex vitro.

Referencias

Amom, T., & Nongdam, P. (2017). The use of molecular marker methods in plants: A review. International Journal of Current Research and Review, 9(17), 1–7.

Amruthakumar, S., Manivel, B., Sivamani, K., Sethuraman, T., Rao, N. S. P., & Ganesh, D. (2024). Molecular identity for commercially important inter-specific hybrids of Coffea using ISSR-DNA marker: Implication on genetic improvement. Plant Biotechnology Reports, 18(3), 425–436.

Andersson, L. (1998). A revision of the genus Cinchona (Rubiaceae—Cinchoneae). Memoirs of The New York Botanical Garden, 80: 1–75.

Andersson, L., & Antonelli, A. (2005). Phylogeny of the Tribe Cinchoneae (Rubiaceae), Its Position in Cinchonoideae, and Description of a New Genus, Ciliosemina. Taxon, 54(1), 17. https://doi.org/10.2307/25065299

Aranha Trelles, K. A., & León Piedra, A. G. (2013). Evaluación de la transferencia de microsatélites ssr’s loci provenientes de otras Rubiáceas a Cinchona officinalis L [Universidad Técnica Particular de Loja]. http://dspace.utpl.edu.ec/handle/123456789/7867

Arbizu, C. I., Ferro-Mauricio, R. D., Chávez-Galarza, J. C., Guerrero-Abad, J. C., Vásquez, H. V., & Maicelo, J. L. (2021). The complete chloroplast genome of the national tree of Peru, quina (Cinchona officinalis L., Rubiaceae). Mitochondrial DNA Part B, 6(9), 2781–2783.

Armijos-González, R., Espinosa-Delgado, L., & Cueva-Agila, A. (2021). Indirect Shoot Regeneration Using 2,4-D Induces Somaclonal Variations in Cinchona officinalis. Floresta e Ambiente, 28, e20210017. https://doi.org/10.1590/2179-8087-FLORAM-2021-0017

Arya, L., Narayanan, R., Kak, A., Pandey, C., Verma, M., & Gupta, V. (2022). ISSR marker based genetic diversity in Morinda spp. For its enhanced collection, conservation and utilization. Genetic Resources and Crop Evolution, 69. https://doi.org/10.1007/s10722-021-01321-2

Aslam, S., Jabeen, T., Ahmad, M., & AL-Huqail, A. A. (2023). Cinchona. In Essentials of Medicinal and Aromatic Crops (pp. 221–248). Springer.

Canales, N. A., Hansen, T. N. G., Cornett, C., Walker, K., Driver, F., Antonelli, A., Maldonado, C., Nesbitt, M., Barnes, C. J., & Rønsted, N. (2020). Historical chemical annotations of Cinchona bark collections are comparable to results from current day high-pressure liquid chromatography technologies. Journal of Ethnopharmacology, 249, 112375.

Canales, N. A., Pérez-Escobar, O. A., Powell, R. F., Töpel, M., Kidner, C., Nesbitt, M., Maldonado, C., Barnes, C. J., Rønsted, N., Przelomska, N. A., & others. (2022). A highly contiguous, scaffold-level nuclear genome assembly for the fever tree (Cinchona pubescens Vahl) as a novel resource for Rubiaceae research. GigaByte, 2022.

Cueva-Agila, A., Vélez-Mora, D., Arias, D., Curto, M., Meimberg, H., & Brinegar, C. (2019). Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genetics & Genomes, 15(6), 81. https://doi.org/10.1007/s11295-019-1393-y

de Swiet, M. (2023). Cinchona: The source of quinine and quinidine. In Modern Medicines from Plants (pp. 93–102). CRC Press.

Du, C., Xiao, Y., Liu, J., He, Q., Li, W., & Xie, W. (2025). A near-complete genome assembly of Cinchona calisaya. Scientific Data, 12(1), 122.

Duta-Cornescu, G., Constantin, N., Pojoga, D.-M., Nicuta, D., & Simon-Gruita, A. (2023). Somaclonal Variation—Advantage or Disadvantage in Micropropagation of the Medicinal Plants. International Journal of Molecular Sciences, 24(1), 838. https://doi.org/10.3390/ijms24010838

Godwin, I. D., Aitken, E. A., & Smith, L. W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18(9), 1524–1528.

Holland, J. (1932). Ledger bark and red bark. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew), 1932(1), 1–17.

Hussain, H., & Nisar, M. (2020). Assessment of plant genetic variations using molecular markers: A review. J. Appl. Biol. Biotechnol, 8(5), 99–109.

Inglis, P. W., Pappas, M. de C. R., Resende, L. V., & Grattapaglia, D. (2018). Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLOS ONE, 13(10), e0206085. https://doi.org/10.1371/journal.pone.0206085

Jaramillo-Arango, J. (1949). A Critical Review of the Basic Facts in the History of Cinchona. Botanical Journal of the Linnean Society, 53(352), 272–311. https://doi.org/10.1111/j.1095-8339.1949.tb00419.x

Ku, Y. (2016). The Development of Cinchona Cultivation and ‘Kina Gaku’in the Japanese Empire, 1912–45. In Environment, Modernization and Development in East Asia: Perspectives from Environmental History (pp. 157–181). Springer.

Kumar, D., Nanthini, B., Rao, S. P., Krishnan, Y., Sethuraman, T., & Doss, G. (2023). Inheritance of RAPD and ISSR markers in hybrid derivatives of inter-specific coffee hybrid (Coffea congensis Froehner x Coffea canephora Pierre): Implications on genetic improvement and plant variety protection. https://doi.org/10.21203/rs.3.rs-3057978/v1

Mishra, M. K., Huded, A. K. C., Jingade, P., & Bychappa, M. (2022). Molecular characterization and genetic structure analysis of Coffea arabica and Coffea canephora cultivars from India using SCoT markers. Ecological Genetics and Genomics, 23, 100117. https://doi.org/10.1016/j.egg.2022.100117

Perez Ocampo, J. (2021). Diversidad y distribución de las quinas (Cinchona, Rubiaceae) usando DNA barcoding para su conservación en Amazonas.

R Core Team. (2021). R: A language and environment for statistical computing [Computer software]. https://www.R-project.org/

Raji, R., & Siril, E. (2021). Genetic diversity analysis of promising Ceylon olive (Elaeocarpus serratus L.) genotypes using morphological traits and ISSR markers. Current Plant Biology, 26, 100201.

Roldán-Ruiz, I., Dendauw, J., Van Bockstaele, E., Depicker, A., & De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrass (Lolium spp.). Molecular Breeding, 6(2), 125–134. https://doi.org/10.1023/A:1009680614564

Sasongko, N., Yuniati, A., & Billmora, L. G. (2021). Genetic profiles of three Cinchona species in Junghuhn Natural Reserve, Indonesia. SABRAO Journal of Breeding & Genetics, 53(4).

Schaepmeester, D. H. (2021). Trees Against Malaria :Alkaloid Concentrations And Management Of Cinchona Trees In Peru And The Dr Congo [Ghent University]. https://libstore.ugent.be/fulltxt/RUG01/003/012/931/RUG01-003012931_2021_0001_AC.pdf

Sneath, P. H. A., & Sokal, R. R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman and Co.

Steere, W. C. (1945). The cinchona-bark industry of South America. The Scientific Monthly, 61(2), 114–126.

Taylor, N. (1943). Quinine: The Story of Cinchona. The Scientific Monthly, 57(1), 17–32.

Theiler, R. (2014). Cinchona a journey around the world [Seminar]. Seminario de investigación del Instituto de Biotecnología de la Universidad Nacional de Colombia, National University of Colombia, Bogotá. https://www.ibun.unal.edu.co

Veale, L. (2010). An historical geography of the Nilgiri Cinchona plantations, 1860-1900 [PhD Thesis]. University of Nottingham.

Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176–183. https://doi.org/10.1006/geno.1994.1151

Cómo citar

APA

Saavedra Correa, J. D., Garcia Romero, I. A. & Theiler, R. (2025). ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro. Revista Colombiana de Biotecnología, 27(2), 9–17. https://doi.org/10.15446/rev.colomb.biote.v27n2.119087

ACM

[1]
Saavedra Correa, J.D., Garcia Romero, I.A. y Theiler, R. 2025. ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro. Revista Colombiana de Biotecnología. 27, 2 (dic. 2025), 9–17. DOI:https://doi.org/10.15446/rev.colomb.biote.v27n2.119087.

ACS

(1)
Saavedra Correa, J. D.; Garcia Romero, I. A.; Theiler, R. ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro. Rev. colomb. biotecnol. 2025, 27, 9-17.

ABNT

SAAVEDRA CORREA, J. D.; GARCIA ROMERO, I. A.; THEILER, R. ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro. Revista Colombiana de Biotecnología, [S. l.], v. 27, n. 2, p. 9–17, 2025. DOI: 10.15446/rev.colomb.biote.v27n2.119087. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/119087. Acesso em: 28 dic. 2025.

Chicago

Saavedra Correa, Juan David, Ibonne Aydee Garcia Romero, y Robert Theiler. 2025. «ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro». Revista Colombiana De Biotecnología 27 (2):9-17. https://doi.org/10.15446/rev.colomb.biote.v27n2.119087.

Harvard

Saavedra Correa, J. D., Garcia Romero, I. A. y Theiler, R. (2025) «ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro», Revista Colombiana de Biotecnología, 27(2), pp. 9–17. doi: 10.15446/rev.colomb.biote.v27n2.119087.

IEEE

[1]
J. D. Saavedra Correa, I. A. Garcia Romero, y R. Theiler, «ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro», Rev. colomb. biotecnol., vol. 27, n.º 2, pp. 9–17, dic. 2025.

MLA

Saavedra Correa, J. D., I. A. Garcia Romero, y R. Theiler. «ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro». Revista Colombiana de Biotecnología, vol. 27, n.º 2, diciembre de 2025, pp. 9-17, doi:10.15446/rev.colomb.biote.v27n2.119087.

Turabian

Saavedra Correa, Juan David, Ibonne Aydee Garcia Romero, y Robert Theiler. «ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro». Revista Colombiana de Biotecnología 27, no. 2 (diciembre 1, 2025): 9–17. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/119087.

Vancouver

1.
Saavedra Correa JD, Garcia Romero IA, Theiler R. ISSR markers as a tool to differentiate genotypes of Cinchona hybrids propagated in vitro and ex vitro. Rev. colomb. biotecnol. [Internet]. 1 de diciembre de 2025 [citado 28 de diciembre de 2025];27(2):9-17. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/119087

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

405

Descargas

Los datos de descargas todavía no están disponibles.