Publicado

2017-01-01

Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus

Effect of Tween® 80 on calcium carbonate bioprecipitation mediated by Bacillus cereus

DOI:

https://doi.org/10.15446/rev.colomb.biote.v19n1.62007

Palabras clave:

Tween 80, biomineralización, Bacillus cereus, calcita, vaterita (es)
Tween® 80, biomineralization, Bacillus cereus, calcite, vaterite (en)

Descargas

Autores/as

  • Darly Yuliana Aristizabal Vásquez Instituto Tecnológico Metropolitano
  • Gerardo Andrés Caicedo Pineda Universidad Pedagógica y Tecnológica de Colombia
  • María Consuelo Prada Fonseca Biofenix S.A.S.
  • Ana Elisa Casas Botero Universidad Pontificia Bolivariana
  • Hader Vladimir Martínez Tejada Universidad Pontificia Bolivariana

Se llevaron a cabo procesos de biosíntesis de carbonato de calcio, empleando una cepa de Bacillus cereus, aislada de los jardines de la Universidad Pontificia Bolivariana (Medellín, Colombia). Se evaluó el efecto disgregante del Tween® 80 a tres concentraciones: 0.00% p/v, 0.25% p/v y 0.50% p/v. Los experimentos se monitorizaron por 6 días con mediciones de pH y análisis mineralógicos a los precipitados finales por microscopía electrónica de barrido, difracción de rayos X y espectroscopia de infrarrojo con transformada de Fourier. El Tween® 80 tuvo un papel importante como desaglomerante de las estructuras de carbonato formadas por los microorganismos. Aunque los ensayos con el surfactante presentaron menor formación de precipitado, las concentraciones evaluadas no inhibieron el crecimiento bacteriano. Adicionalmente, este compuesto favoreció la formación de vaterita incrementando su proporción en comparación con la calcita (alrededor del 98%, utilizando Tween® 80 al 0.50% p/v).

This research presents the sprinkling effect of Tween® 80 for three concentrations (0.00% w, 0.25% w y 0.50% w) in a processes of calcium carbonate biosynthesis. The assays used a culture of Bacillus cereus, isolated from the gardens of the Universidad Pontificia Bolivariana (Medellin, Colombia). The experiments were monitored for 6 days measuring pH as well as through mineralogical analyses for precipitates using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Tween® 80 had an important role as deagglomerate, decreasing the precipitation of biomineralized-carbonate structures (generated by bacteria). It was also found that the evaluated concentrations did not inhibit the bacterial growth. Additionally, Tween® 80 favored the production of vaterite, increasing its ratio in comparison to calcite (around 98% by using 0.50% w of Tween® 80).

Referencias

Bachmeier, K., Williams, A. , Warmington, J., & Bang, S. (2002). Urease activity in microbiologically-induced calcite precipitation. Journal of Biotechnology, 93, 171–181.

Daskalakis, M., Rigas, F., Bakolas, A., Magoulas, A., Kotoulas, G., Katsikis, I., … Mavridou, A. (2015). Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania, Athens, Greece. International Biodeterioration and Biodegradation, 99, 73–84.

DePaula, S., Huila, M., Araki, K., & Toma, H. (2010). Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media. Micron, 41, 983–989.

Douglas, S., & Beveridge, T. (1998). Mineral formation by bacteria in natural microbial communities. FEMS Microbiology Ecology, 26, 79–88.

Downs, R., & Hall-Wallace, M. (2003). The American Mineralogist crystal structure database. American Mineralogist, 88, 247–250.

Dupraz, S., Parmentier, M., Ménez, B., & Guyot, F. (2009). Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chemical Geology, 265, 44–53.

Evans, E., & Abdullah, A. (2012). Effect of Surfactant Inclusions on the Yield and Characteristics of Protease from Bacillus subtilis. The Publishing House of the Romanian Academy, Series B, 2, 108–112.

Henderson, G., Murray, B., & McGrath, K. (2008). Controlled variation of calcite morphology using simple carboxylic acids. Journal of Crystal Growth, 310, 4190–4198.

Kniess, C. T., Cardoso de Lima, J., & Prates, P. B. (2012). The Quantification of Crystalline Phases in Materials: Applications of Rietveld Method. in Sintering - Methods and Products, ISBN: 978-953-51-0371-4, 293–316.

Komala, T., & Khun, T. (2013). Calcite-Forming Bacteria Located in Limestone Area of Malaysia. Journal of Asian and Scientific Research, 3, 471–484.

Liu, J., Liu, Y., Kong, Y., Yao, J., & Cai, Y. (2013). Formation of vaterite regulated by silk sericin and its transformation towards hydroxyapatite microsphere. Materials Letters, 110, 221–224.

Matahwa, H., Ramiah, V., & Sanderson, R. (2008). Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives. Journal of Crystal Growth, 310, 4561–4569.

McCusker, L., Von Dreele, R., Cox, D., Loue, D., & Scardi, P. (1999). Rietveld refinement guidelines. Journal of Applied Crystalography, 32, 36–50.

Mitchell, A., Phillips, A., Schultz, L., Parks, S., Spangler, L., Cunningham, A., & Gerlach, R. (2013). Microbial CaCO3 mineral formation and stability in an experimentally simulated high pressure saline aquifer with supercritical CO2. International Journal of Greenhouse Gas Control, 15, 86–96.

Montoya, C., Márquez, M., López, J., & Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnologia, 7, 19–25.

Nakahara, Y., Mizuguchi, M., & Miyata, K. (1979). Effects of surfactants on CaCO3 spheres prepared by interfacial reaction method. Journal of Colloid And Interface Science, 68, 401–407.

Parks, S. (2009). Kinetics of Calcite Precipitation By Ureolytic Bacteria Under Aerobic and Anaerobic Conditions. E.E.U.U.: Montana State University, p 93.

Patil, V., Patil, U., Bhoge, Y., & Kulkarni, R. (2014). Facile Synthesis of Calcium Carbonate Nanoparticles using Solution Spray Reactor System. International Journal of Applied Engineering Research, 9, 1261–1270.

Saikia, J., & Das, G. (2014). Framboidal vaterite for selective adsorption of anionic dyes. Journal of Environmental Chemical Engineering, 2, 1165–1173.

Sevcík, R., Pérez-Estébanez, M., Viani, A., Sasek, P., & Mácová, P. (2015). Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technology, 284, 265–271.

Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds, 8th Edition. Wiley Online Library, p 474.

Simanjuntak, W., & Sembiring, S. (2011). The use of the Rietveld method to study the phase composition of cordierite (Mg2Al4Si5O18) ceramics prepared from rice husk silica. Makara, Sains, 15, 97–100.

Singh, M., Kumar, V., Waghmare, S., & Sabale, P. (2016). Aragonite-vaterite-calcite: Polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Construction and Building Materials, 112, 386–397.

Stocks-Fischer, S., Galinat, J., & Bang, S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31, 1563–1571.

Sung, H., Hirasawa, I., Kim, W., & Chang, K. (2005). Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. Journal of Colloid and Interface Science, 288, 496–502.

Trushina, D., Bukreeva, T., Kovalchuk, M., & Antipina, M. (2015). CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering C, 45, 644–658.

Wada, N., Kanamura, K., & Umegaki, T. (2001). Effects of Carboxylic Acids on the Crystallization of Calcium Carbonate. Journal of Colloid and Interface Science, 233, 65–72.

Wada, N., Yamashita, K., & Umegaki, T. (1999). Effects of Carboxylic Acids on Calcite Formation in the Presence of Mg2+ Ions. Journal of Colloid and Interface Science, 212, 357–364.

Wang, F., Xu, Z., Zhang, Y., Li, J., Nian, S., & Zhou, N. (2016). Green synthesis and bioactivity of vaterite-doped beta-dicalcium silicate bone cement. Ceramics International, 42, 1856–1861.

Wang, Y. Yao, Q., Zhou, G., & Fu, S. (2013). Formation of elongated calcite mesocrystals and implication for biomineralization. Chemical Geology, 360–361, 126–133.

Weiner, S., & Dove, P. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy, 54, 1–29.

Wong, L. (2015). Microbial cementation of ureolytic bacteria from the genus Bacillus: A review of the bacterial application on cement-based materials for cleaner production. Journal of Cleaner Production, 93, 5–17.

Zhang, C., Zhang, J., Feng, X., Li, W., Zhao, Y., & Han, B. (2008). Influence of surfactants on the morphologies of CaCO3 by carbonation route with compressed CO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 324, 167–170.

Zhou, G., Guan, Y., Yao, Q., & Fu, S. (2010). Biomimetic mineralization of prismatic calcite mesocrystals: Relevance to biomineralization. Chemical Geology, 279, 63–72.

Cómo citar

APA

Aristizabal Vásquez, D. Y., Caicedo Pineda, G. A., Prada Fonseca, M. C., Casas Botero, A. E. y Martínez Tejada, H. V. (2017). Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus. Revista Colombiana de Biotecnología, 19(1), 116–123. https://doi.org/10.15446/rev.colomb.biote.v19n1.62007

ACM

[1]
Aristizabal Vásquez, D.Y., Caicedo Pineda, G.A., Prada Fonseca, M.C., Casas Botero, A.E. y Martínez Tejada, H.V. 2017. Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus. Revista Colombiana de Biotecnología. 19, 1 (ene. 2017), 116–123. DOI:https://doi.org/10.15446/rev.colomb.biote.v19n1.62007.

ACS

(1)
Aristizabal Vásquez, D. Y.; Caicedo Pineda, G. A.; Prada Fonseca, M. C.; Casas Botero, A. E.; Martínez Tejada, H. V. Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus. Rev. colomb. biotecnol. 2017, 19, 116-123.

ABNT

ARISTIZABAL VÁSQUEZ, D. Y.; CAICEDO PINEDA, G. A.; PRADA FONSECA, M. C.; CASAS BOTERO, A. E.; MARTÍNEZ TEJADA, H. V. Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus. Revista Colombiana de Biotecnología, [S. l.], v. 19, n. 1, p. 116–123, 2017. DOI: 10.15446/rev.colomb.biote.v19n1.62007. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/62007. Acesso em: 28 mar. 2024.

Chicago

Aristizabal Vásquez, Darly Yuliana, Gerardo Andrés Caicedo Pineda, María Consuelo Prada Fonseca, Ana Elisa Casas Botero, y Hader Vladimir Martínez Tejada. 2017. «Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus». Revista Colombiana De Biotecnología 19 (1):116-23. https://doi.org/10.15446/rev.colomb.biote.v19n1.62007.

Harvard

Aristizabal Vásquez, D. Y., Caicedo Pineda, G. A., Prada Fonseca, M. C., Casas Botero, A. E. y Martínez Tejada, H. V. (2017) «Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus», Revista Colombiana de Biotecnología, 19(1), pp. 116–123. doi: 10.15446/rev.colomb.biote.v19n1.62007.

IEEE

[1]
D. Y. Aristizabal Vásquez, G. A. Caicedo Pineda, M. C. Prada Fonseca, A. E. Casas Botero, y H. V. Martínez Tejada, «Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus», Rev. colomb. biotecnol., vol. 19, n.º 1, pp. 116–123, ene. 2017.

MLA

Aristizabal Vásquez, D. Y., G. A. Caicedo Pineda, M. C. Prada Fonseca, A. E. Casas Botero, y H. V. Martínez Tejada. «Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus». Revista Colombiana de Biotecnología, vol. 19, n.º 1, enero de 2017, pp. 116-23, doi:10.15446/rev.colomb.biote.v19n1.62007.

Turabian

Aristizabal Vásquez, Darly Yuliana, Gerardo Andrés Caicedo Pineda, María Consuelo Prada Fonseca, Ana Elisa Casas Botero, y Hader Vladimir Martínez Tejada. «Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus». Revista Colombiana de Biotecnología 19, no. 1 (enero 1, 2017): 116–123. Accedido marzo 28, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/62007.

Vancouver

1.
Aristizabal Vásquez DY, Caicedo Pineda GA, Prada Fonseca MC, Casas Botero AE, Martínez Tejada HV. Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus. Rev. colomb. biotecnol. [Internet]. 1 de enero de 2017 [citado 28 de marzo de 2024];19(1):116-23. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/62007

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

606

Descargas

Los datos de descargas todavía no están disponibles.