Panorama general de los organismos genéticamente modificados en Colombia y en el mundo: Capacidad nacional de detección
Overview of genetically modified organisms in Colombia and worldwide : National detection capabilities
Visão geral dos organismos geneticamente modificados na Colômbia e no mundo: capacidade nacional de detecção
DOI:
https://doi.org/10.15446/rev.colomb.biote.v20n2.77080Palabras clave:
Organismo Genéticamente Modificado, Materiales de referencia, Métodos de detección (es)Genetically Modified Organism, Reference Materials, Detection methods (en)
Organismo Geneticamente Modificado, Materiais de referência, Métodos de detecção (pt)
Descargas
Los organismos genéticamente modificados (OGM) y en particular los cultivos genéticamente modificados (GM), son el resultado de la modificación de la información genética de una especie a partir del uso de la biotecnología moderna para proporcionar nuevas características que su contraparte no modificada no posee, tales como resistencia a insectos, tolerancia a herbicidas, contenido de nutrientes entre otros. La mayor parte de estos cultivos se concentran en cuatro productos: soya (Glycine max), maíz (Zea Mays), canola (Brassica napus) y algodón (Gossypium hirsutum); y los principales productores son Estados Unidos, Brasil, Argentina, India y Canadá. Por su parte, Colombia ocupa el puesto 18 con cultivos de maíz, algodón y claveles azules. La introducción de estas especies en cualquier mercado está limitada por la legislación propia del país destino, así como por los estudios que permiten establecer su efecto sobre el medio ambiente, la salud humana y animal; en este sentido, la precisión y confianza de las técnicas analíticas empleadas en la evaluación del contenido de OGM son un elemento importante para la toma de decisiones basadas en evidencias objetivas, especialmente frente al debate en torno a su uso. Este documento presenta una revisión de las tecnologías de análisis más importantes disponibles a nivel mundial, frente a las capacidades nacionales para su detección.
Genetically modified organisms (GMO) and particularly genetically modified (GM) crops are the result of modifying the genetic information of a species through the use of modern biotechnology to provide new features that are nonexistent in the unmodified counterpart, such as resistance to insects, tolerance to herbicides, and nutrient content, among others. Most of these crops are concentrated in four products: soy (Glycine max), corn (Zea Mays), canola (Brassica napus) and cotton (Gossypium hirsutum), with the United States, Brazil, Argentina, India and Canada as their main producers. Colombia, meanwhile, ranks 18th worldwide, with corn, cotton and blue carnation crops. The introduction of these species into any market is limited by the legislation of the destination country, as well as by studies that can establish the effect of the GM crop on the environment and human and animal health. For this reason, the accuracy and reliability of analytical techniques used to evaluate GMO content are important for decision-making based on objective evidence, especially in terms of the debate surrounding their use. Therefore, the following document presents a review of the most important GM crop analysis technologies in the world, vis a vis national detection capabilities.
Referencias
Aguilera, P., Tachiquín, M. R., Graciela, M., Munive, R., & Olvera, B. P. (2014). PCR en tiempo real. In Herramientas Moleculares Aplicadas en Ecologia:Aspectos teoricos y prácticos (Mexico, pp. 175–202).
Ahmed, F. E. (2002). Detection of genetically modified organisms in foods. Trends in Biotechnology, 20(5), 215–223.
Anklam, E., Gadani, F., Heinze, P., Pijnenburg, H., & Van Den Eede, G. (2002). Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived food products. European Food Research and Technology, 214(1), 3–26. https://doi.org/10.1007/s002170100415.
Beyer, P., Al-babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., & Rice, G. (2002). Golden Rice : Introducing the B-Carotene Biosynthesis Pathway into Rice Endosperm by Genetic Engineering to Defeat Vitamin A Deficiency 1. Symposium: Plant Breeding: A New Tool for Fighting Micronutrient Malnutrition, (February), 506–510. https://doi.org/https://doi.org/10.1093/jn/132.3.506S.
Bhat, S., Curach, N., Mostyn, T., Bains, G. S., Griffiths, K. R., & Emslie, K. R. (2010). Comparison of Methods for Accurate Quantification of DNA Mass Concentration with Traceability to the International System of Units, 82(17), 7185–7192.
Bhat, S., & Emslie, K. R. (2016). Digital polymerase chain reaction for characterisation of DNA reference materials. Biomolecular Detection and Quantification, 10, 47–49. https://doi.org/10.1016/j.bdq.2016.04.001.
Brett, G. ., Chambers, S. ., Huang, L., & Morgan, M. R. . (1999). Design and development of immunoassays for detection of proteins. Food Control, 10(6), 401–406. https://doi.org/10.1016/S0956-7135(99)00082-1.
Broeders, S., Huber, I., Grohmann, L., Berben, G., Taverniers, I., Mazzara, M., … Morisset, D. (2014). Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science & Technology, 37(2), 115–126. https://doi.org/10.1016/j.tifs.2014.03.008.
Burke, D. G., Dong, L., Bhat, S., Forbes-Smith, M., Fu, S., Pinheiro, L., … Emslie, K. R. (2013). Digital polymerase chain reaction measured pUC19 marker as calibrant for HPLC measurement of DNA quantity. Analytical Chemistry, 85(3), 1657–1664. https://doi.org/10.1021/ac302925f.
Burns, M. J., Burrell, a. M., & Foy, C. a. (2010). The applicability of digital PCR for the assessment of detection limits in GMO analysis. European Food Research and Technology, 231(3), 353–362. https://doi.org/10.1007/s00217-010-1277-8.
Caprioara-Buda, M., Meyer, W., Jeynov, B., Corbisier, P., Trapmann, S., & Emons, H. (2012). Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry, 404(1), 29–42. https://doi.org/10.1007/s00216-012-6104-6.
Castaño-Hernández, A. (2015). Alimentos derivados de cultivos genéticamente modificados. ¿Nuevos, seguros para la salud humana, consumidos? Pediatría, 48(3), 68–74. https://doi.org/10.1016/j.rcpe.2015.09.001
Charles, D., Broeders, S., Corbisier, P., Trapman, S., Schimmel, H., & Emons, H. (2007). Toward Metrological Traceability for DNA Fragment Ratios in GM Quantification . 3 . Suitability of DNA Calibrants Studied with a MON 810 Corn Model. Journal of Agricultural and Food Chemistry, 55, 3268–3274.
Chen, X., Wang, X., Jin, N., Zhou, Y., Huang, S., Miao, Q., … Xu, J. (2012). Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. International Journal of Molecular Sciences, 13(11), 14421–14433. https://doi.org/10.3390/ijms131114421.
Corbisier, P., Pinheiro, L., Mazoua, S., Kortekaas, A. M., Chung, P. Y. J., Gerganova, T., … Emslie, K. (2015). DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Analytical and Bioanalytical Chemistry, 407(7), 1831–1840. https://doi.org/10.1007/s00216-015-8458-z.
Corbisier, P., Vincent, S., Schimmel, H., Kortekaas, A., Trapmann, S., Burns, M., … Emslie, K. (2010). CCQM-K86 / P113 . 1 : Relative quantification of genomic DNA fragments extracted from a biological tissue Authors : Draft B, 1–30.
DANE, D. A. N. de E. (2016). Encuesta Nacional Agropecuaria ENA-2016. Boletin Tecnico Comunicación Informativa (DANE), (1), 1–24.
Demeke, T., Gräfenhan, T., Holigroski, M., Fernando, U., Bamforth, J., & Lee, S. J. (2014). Assessment of droplet digital PCR for absolute quantification of genetically engineered OXY235 canola and DP305423 soybean samples. Food Control, 46, 470–474. https://doi.org/10.1016/j.foodcont.2014.06.018.
Departamento Nacional de Planeación. (2015). Plan Nacional de Desarrollo, Todos Por un Nuevo País 2014 - 2018 (tomo I) (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004.
Doménech-Sánchez, A., & Vilab, J. (2004). Fundadento, tipos y aplicaciones de los microarreglos de ADN en la microbiología médica. Enfermedades Infecciosas y Microbiologia Clinica, 22(1), 46–54.
Dong, L., Meng, Y., Wang, J., & Liu, Y. (2014). Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers. Analytical and Bioanalytical Chemistry, 406(6), 1701–12. https://doi.org/10.1007/s00216-013-7546-1.
FAO. (2007). Análisis de riesgos relativos a la inocuidad de los alimentos. Guía para las autoridaddes nacionales de inocuidad de los alimentos. Roma. Retrieved from ftp://ftp.fao.org/docrep/fao/010/a0822s/a0822s.pdf.
FAO, F. and A. O. (2003). World agriculture : towards 2015 / 2030 World agriculture : towards 2015 / 2030. Earthscan (Vol. 20). https://doi.org/10.1016/S0264-8377(03)00047-4.
Fenalce. Expectativas de siembra para maíz y soya en 2022 (2014).
Fraiture, M. A., Herman, P., Taverniers, I., De Loose, M., Deforce, D., & Roosens, N. H. (2015). Review Article Current and New Approaches in GMO Detection : Challenges and Solutions. BioMed Research International, 2015(Table 1), 1–22. https://doi.org/10.1155/2015/392872.
Ganceberg, D., Connely, P., Contreras Lopez, M. C., Corbisier, P., Gioria, S., Van Nyen, M., … Trapmann, S. (2007). Certification of Reference Materials of Soya Powder with different Mass Fractions of 356043 Soya Certified Reference Materials ERM ® -BF425, 425. https://doi.org/10.2787/2857.
Haynes, R. J., Kline, M. C., Toman, B., Scott, C., Wallace, P., Butler, J. M., & Holden, M. J. (2013). Standard reference material 2366 for measurement of human cytomegalovirus DNA. The Journal of Molecular Diagnostics : JMD, 15(2), 177–85. https://doi.org/10.1016/j.jmoldx.2012.09.007.
Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 11(9), 1026–1030. https://doi.org/10.1038/nbt0993-1026.
Hilder, V. A., & Boulter, D. (1999). Genetic engineering of crop plants for insect resistance - A critical review. Crop Protection, 18(3), 177–191. https://doi.org/10.1016/S0261-2194(99)00028-9.
Holst-Jensen, A., Bertheau, Y., de Loose, M., Grohmann, L., Hamels, S., Hougs, L., … Wulff, D. (2012). Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnology Advances, 30(6), 1318–35. https://doi.org/10.1016/j.biotechadv.2012.01.024.
Instituto Colombiano Agropecuario-ICA. (2000). Res1219 (18 MAYO 2000) Por la cual se autoriza la introducción de plantas de clavel modificado genéticamente.
Inghelbrecht, L., Dessein, J., & Van Huylenbroeck, G. (2014). The non-GM crop regime in the EU: How do Industries deal with this wicked problem? NJAS - Wageningen Journal of Life Sciences, 70, 103–112. https://doi.org/10.1016/j.njas.2014.02.002.
Instituto Colombiano Agropecuario, I. (2015). Resolucion 3168 de 2015. Por medio de la cual se reglamenta y controla la producción, importación y exportación de semillas producto del mejoramiento genético para la comercialización y siembra en el país, así como el registro de las unidades de evaluació. Retrieved from http://www.ica.gov.co/getattachment/4e8c3698-8fcb-4e42-80e7-a6c7acde9bf8/2015R3168.aspx.
Instituto Nacional de Vigilancia de Medicamentos y Alimentos, I. (2017). Lineamiento para orientar la ejecución de los planes nacionales subsectoriales de vigilancia y control de: Rotulado de alimentos que declaran que son “Libres de OGM” o “No contiene OGM” y de OGM para alimentos de origen ecológico año 2017.
James, C. (2014). Brief 49 Global status of Commercialized biotech / GM Crops : 2014. International Service for Acquisition of Agri-Biotech Applications, 49(46), 11. https://doi.org/10.1017/S0014479706343797.
James, C. (2015). 20th Anniversay (1995 to 2015) of the Global Commercialization of Biotech Crops and Biotech Crops Highlights in 2015.
James, C. (2016). Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Briefs, (Brief 52), 317. https://doi.org/10.1017/S0014479706343797.
JCGM. (2012). Vocabulario Internacional de Metrología - Conceptos fundamentales y generales, y términos asociados (VIM). International Organization for Standardization Geneva ISBN, 3a Edición(Vim), 104. https://doi.org/10.1016/0263-2241(85)90006-5.
Kamle, S., & Ali, S. (2013). Genetically modified crops: Detection strategies and biosafety issues. Gene, 522(2), 123–132. https://doi.org/10.1016/j.gene.2013.03.107.
Koeber, R., Linsinger, T. P. J., & Emons, H. (2010). An approach for more precise statements of metrological traceability on reference material certificates. Accreditation and Quality Assurance, 15(4), 255–262. https://doi.org/10.1007/s00769-010-0644-2.
Kovalic, D., Garnaat, C., Guo, L., Yan, Y., Groat, J., Silvanovich, A., … Bannon, G. (2012). The Use of Next Generation Sequencing and Junction Sequence Analysis Bioinformatics to Achieve Molecular Characterization of Crops Improved Through Modern Biotechnology. The Plant Genome Journal, 0(0), 0. https://doi.org/10.3835/plantgenome2012.10.0026.
Liang, C., Van Dijk, J. P., Scholtens, I. M. J., Staats, M., Prins, T. W., Voorhuijzen, M. M., … Kok, E. J. (2014). Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Analytical and Bioanalytical Chemistry, 406(11), 2603–2611. https://doi.org/10.1007/s00216-014-7667-1.
Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7(8), 4254–4281. https://doi.org/10.3390/v7082819
Lusser, M., Parisi, C., Plan, D., & Rodríguez-cerezo, E. (2011). New plant breeding techniques State-of-the-art and prospects for commercial development New plant breeding techniques State-of-the-art and prospects. JRC Scientific and Technical Reports (Vol. 82). Luxembourg. https://doi.org/10.2791/60346.
Manzanares-Palenzuela, C. L., de-los-Santos-Álvarez, N., Lobo-Castañón, M. J., & López-Ruiz, B. (2015). Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean. Biosensors & Bioelectronics, 68, 259–65. https://doi.org/10.1016/j.bios.2015.01.007.
Milavec, M., Gruden, K., & Jana, Z. (2013). Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR, 8(5). https://doi.org/10.1371/journal.pone.0062583.
Milton, M. J. T., & Quinn, T. J. (2001). Primary methods for the measurement of amount of substance. Metrologia, 38(4), 289–296. https://doi.org/10.1088/0026-1394/38/4/1.
Ministerio de Agricultura y Desarrollo Rural. (2005). Decreto 4525 Por el cual se reglamenta la ley 740 de 2002, 11.
Ministerio de Agricultura y Desarrollo Rural, M. (2016). Estrategia Colombia Siembra.
Ministerio de la Protección Social. Resolucion 4254 (22 SEP 2011) Por medio de la cual se expide el reglamento técnico que establece disposiciones relacionadas con el rotulado o etiquetado de alimentos derivados de Organismos Genéticamente Modificados -OGM para consumo humano (2011). Colombia.
Miraglia, M., Berdal, K. G., Brera, C., Corbisier, P., Holst-Jensen, A., Kok, E. J., … Zagon, J. (2004). Detection and traceability of genetically modified organisms in the food production chain. Food and Chemical Toxicology, 42(7), 1157–1180. https://doi.org/10.1016/j.fct.2004.02.018.
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63.
Novak, P. K., Gruden, K., Morisset, D., Lavrač, N., Štebih, D., Rotter, A., & Žel, J. (2009). GMOtrack: Generator of cost-effective GMO testing strategies. Journal of AOAC International, 92(6), 1739–1746.
Official Journal of the European Union. (2004). Commission Recomendation (EC) No 787/2004 of 4 October 2004 on technical guidance for sampling and detection of genetically modified organism and material produced form geneticallly modified organism as or in products in the context of regulation (EC) No, 4(1830), 18–26.
Oficial Journal of the European Union, (2011). Commission regulation (EU) No 619/2011 of 24 june 2011. laying down the methods of sampling and analysis for the official control of feed as regards presence of genetically modified material for which an authorisation procedure is pending or the authorisa, (619), 9–15.
Organización para la cooperación y el desarrollo Económicos, O. (2017). OECD BioTrack Product Database. Retrieved from http://www2.oecd.org/biotech/default.aspx.
Panteghini, M. (2007). Traceability, reference systems and result comparability. The Clinical Biochemist. Reviews / Australian Association of Clinical Biochemists, 28(3), 97–104. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17909614.
Park, S.-B., Kim, H.-Y., & Kim, J.-H. (2015). Multiplex PCR system to track authorized and unauthorized genetically modified soybean events in food and feed. Food Control, 54, 47–52. https://doi.org/10.1016/j.foodcont.2015.01.035
Parlamento Europeo y Consejo de las Comunidades Europeas. (2008). Directiva 2001/18/CE del parlamento Europeo y del consejo del 12 de marzo de 2001 ►B DIRECTIVA 2001/18/CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 12 de marzo de 2001 sobre la liberación intencional en el medio ambiente de organismos modificados genéticame, 51, 1–13.
Pérez, L. (2018). Alianza El Agro Exporta. Por un campo productivo, moderno, que siembra, se transforma y vende.
Pérez, U. M., & Acatzi, S. A. I. (2014). Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains. Metrologia, 51(1), 61–66. https://doi.org/10.1088/0026-1394/51/1/61.
Pettersson, E., Lundeberg, J., & Ahmadian, A. (2009). Generations of sequencing technologies. Genomics, 93(2), 105–111. https://doi.org/10.1016/j.ygeno.2008.10.003.
Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., Bhat, S., & Emslie, K. R. (2012). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical Chemistry, 84(2), 1003–1011. https://doi.org/10.1021/ac202578x.
Pinilla, J. (2017). Colombia: 26.5 millones de hectareas con vocación agro. Diario La República, p. 2017.
Pohl, G., & Shih, I.-M. (2004). Principle and applications of digital PCR. Expert Review of Molecular Diagnostic, 4(1), 41–47. https://doi.org/ERM040106 [pii].
Popping, B. (2003). Identifying genetically modified organisms (GMOs). In Food Authenticity and Traceability (pp. 415–425). https://doi.org/10.1533/9781855737181.2.415.
Querci, M., Kleter, G., Malingreau, J., Broll, H., & Eede, G. Van Den. (2008). Scientific and technical contribution to the development of an overall health strategy in the area of GMOs. (JRC Reference Reports, Ed.). https://doi.org/10.2788/16411.
Randhawa, G. J., Singh, M., Morisset, D., Sood, P., & Zel, J. (2013). Loop-mediated isothermal amplification: rapid visual and real-time methods for detection of genetically modified crops. J Agric Food Chem, 61(47), 11338–11346. https://doi.org/10.1021/jf4030085.
Rohland, N., & Reich, D. (2011). Cost-effective , high-throughput DNA sequencing. Genome Res., 939–946. https://doi.org/10.1101/gr.128124.111.22.
Scholtens, I. M. J., Kok, E. J., Hougs, L., Molenaar, B., Thissen, J. T. N. M., & van der Voet, H. (2010). Increased efficacy for in-house validation of real-time PCR GMO detection methods. Analytical and Bioanalytical Chemistry, 396(6), 2213–27. https://doi.org/10.1007/s00216-009-3315-6.
Shao, N., Jiang, S. M., Zhang, M., Wang, J., Guo, S. J., Li, Y., … Tao, S. C. (2014). MACRO: A combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Analytical Chemistry, 86(2), 1269–1276. https://doi.org/10.1021/ac403630a.
Song, Q., Wei, G., & Zhou, G. (2014). Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer. Food Chemistry, 154, 78–83. https://doi.org/10.1016/j.foodchem.2014.01.001.
Taverniers, I., Windels, P., Vaïtilingom, M., Milcamps, A., Van Bockstaele, E., Van Den Eede, G., & De Loose, M. (2005). Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola. Journal of Agricultural and Food Chemistry, 53(8), 3041–3052. https://doi.org/10.1021/jf0483467.
Turkec, A., Lucas, S. J., Karacanli, B., Baykut, A., & Yuksel, H. (2016). Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms (GMOs). Food Chemistry, 194, 399–409. https://doi.org/10.1016/j.foodchem.2015.08.030.
Vela, R. F. (2013). Diseño de un método de detección múltiple para la identificación de Organismos Genéticamente Modificados en alimentos procesados. Pontificia Universidad Javeriana.
Vesper, H. W., Miller, W. G., & Myers, G. L. (2007). Reference materials and commutability. The Clinical Biochemist. Reviews / Australian Association of Clinical Biochemists, 28(4), 139–47.
Vijayakumar, K. R., Martin, A., Gowda, L. R., & Prakash, V. (2009). Detection of genetically modified soya and maize: Impact of heat processing. Food Chemistry, 117(3), 514–521. https://doi.org/10.1016/j.foodchem.2009.04.028.
Villafañe, C. (2010). Generación de información sobre parientes Sivestres de OGM en Colombia: caso Arroz. Infromes Tecnicos de Investigación.
Vogelstein, B., & Kinzler, K. W. (1999). Digital PCR. Genetics, 96(August), 9236–9241. https://doi.org/10.1073/pnas.96.16.9236.
Wang, H., Qian, C., Su, C., Duan, Y., & Bai, H. (2013). Rapid real-time PCR detection of transgenic cry1C rice using plasmid molecule as calibrator, 101–107. https://doi.org/10.1007/s00217-013-1957-2.
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14. https://doi.org/10.1007/s00425-003-1105-5.
Wong, A. Y.-T., & Chan, A. W.-K. (2016). Genetically Modified Foods in China and the United States: A Primer of Regulation and Intellectual Property Protection. Food Science and Human Wellness, (October 2014). https://doi.org/10.1016/j.fshw.2016.03.002.
Yang, L., Wang, C., Holst-jensen, A., Morisset, D., Lin, Y., & Zhang, D. (2013). Characterization of GM events by insert, 1–9. https://doi.org/10.1038/srep02839.
Zahradnik, C., Kolm, C., Martzy, R., Mach, R. L., Krska, R., Farnleitner, A. H., & Brunner, K. (2014). Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: A practical approach. Analytical and Bioanalytical Chemistry, 406(27), 6835–6842. https://doi.org/10.1007/s00216-014-7889-2.
Zhong, Q., Bhattacharya, S., Kotsopoulos, S., Olson, J., Taly, V., Griffiths, A. D., … Larson, J. W. (2011). Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab on a Chip, 11(13), 2167–74. https://doi.org/10.1039/c1lc20126c.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2018 Revista Colombiana de Biotecnología

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).