Interacción in silico de las moléculas Agathisflavona, Amentoflavona y Punicalina con la Importina α1 humana
In silico interaction of Agathisflavone, Amentoflavone and Punicalin molecules with human Importin α1
DOI:
https://doi.org/10.15446/rev.colomb.biote.v23n2.94466Palabras clave:
Biflavonoides, Taninos, Carioferinas, Virus, Proteínas virales (es)Biflavonoids, Tannin, Karyopherins, Viruses, Viral proteins (en)
Varios virus con genoma de ARN en fases iniciales de la infección realizan la translocación de proteínas al interior del núcleo de la célula hospedera mediante la vía de las importinas α1. Este transporte es fundamental para el éxito de la replicación viral y se ha convertido en un blanco para la búsqueda y desarrollo de nuevos antivirales. El objetivo de este estudio fue determinar y caracterizar interacciones entre la Agatisflavona, Amentoflavona, Punicalina con el sitio mayor de unión de las Importinas α1 humanas mediante el análisis in silico del acoplamiento molecular y simulaciones de dinámica molecular. Las pruebas de acoplamiento molecular se realizaron entre estos fitoconstituyentes y la estructura de la importina α1 humana. Las afinidades de interacción fueron detectadas con la Agatisflavona, Amentoflavona y Punicalina (ΔGb = -8,8, -9,1 y -8,8 kcal.mol-1 respectivamente), con afinidades de interacción específicamente a los dominios ARM2–ARM5 (sitio mayor de unión) de las importinas α1. Las simulaciones de dinámica molecular revelaron interacciones significativamente favorables (P<0,001) con los ligandos Agatisflavona y Amentoflavona (ΔGb= -18,60±0,35 y -22,55±2,41 kcal.mol-1) mientras que la Punicalina registró mayores valores de energía de interacción (ΔGb= -5,33±1,72 kcal.mol-1). Los hallazgos obtenidos en este estudio computacional sugieren que las moléculas Agatisflavona y Amentoflavona presentan interacciones favorables con el sitio mayor de unión de las Importinas α1, en comparación a lo registrado con la Punicalina, sin embargo, se recomienda realizar ensayos in vitro a modo de confirmar estas observaciones.
Several RNA-viruses during early stages of infection perform the translocation of proteins into the nucleus of host cell by the importin α1 pathway. This transport is essential for viral replication success and has become a target to search and development new antivirals. The objective of this study was to determine and characterize interactions between Agathisflavone, Amentoflavone and Punicalin with the major binding site of human importins α1 by in silico analysis of molecular docking and molecular dynamics simulations. Molecular docking tests were performed between these phytoconstituents and the structure of human importin α1. Interaction’s affinity was detected with the Agathisflavone, Amentoflavone and Punicalin (ΔGb = -8.8, -9.1 and -8.8 kcal.mol-1 respectively), with binding affinity to ARM 2–ARM 5 domains (major binding site) of importins α1. Molecular dynamics simulations revealed significantly favorable interactions (P<0.001) with the ligands Agatisflavone and Amentoflavone (ΔGb = -18.60 ± 0.35 and -22.55 ± 2.41 kcal.mol-1) meanwhile Punicalin showed higher values of interaction free energy (ΔGb = -5.33 ± 1.72 kcal.mol-1). The findings obtained suggest that Agathisflavone and Amentoflavone could favorably interact to the major binding site of Importins α1 compared to that registered with Punicalin, however, it is recommended to perform in vitro assays to confirm these observations.
Referencias
Abu-Reida, I. M., Jamous, R. M., & Ali-Shtayeh, M. S. (2014). Phytochemistry, Pharmacological Properties and Industrial Applications of Rhus Coriaria L. (Sumac). Jordan Journal of Biological Sciences, 147(1573), 1-12. https://doi.org/10.12816/0008245
Åqvist, J., Medina, C., & Samuelsson, J. E. (1994). A new method for predicting binding affinity in computer-aided drug design. Protein Engineering, Design and Selection, 7(3), 385-391. https://doi.org/10.1093/protein/7.3.385
Bais, S., & Abrol, N. (2015). Review on Chemistry and Pharmacological Potential of Amentoflavone. Current Research in Neuroscience, 6(1), 16-22. https://doi.org/10.3923/crn.2016.16.22
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235
Brandsdal, B. O., Österberg, F., Almlöf, M., Feierberg, I., Luzhkov, V. B., & Åqvist, J. (2003). Free Energy Calculations and Ligand Binding. En Advances in Protein Chemistry (Vol. 66, pp. 123-158). Academic Press. https://doi.org/10.1016/S0065-3233(03)66004-3
Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545-1614. https://doi.org/10.1002/jcc.21287
Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787
Chinsembu, K. C. (2019). Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Revista Brasileira de Farmacognosia, 29(4), 504-528. https://doi.org/10.1016/j.bjp.2018.10.006
Chook, Y., & Blobel, G. (2001). Karyopherins and nuclear import. Current Opinion in Structural Biology, 11(6), 703-715. https://doi.org/10.1016/S0959-440X(01)00264-0
Coulerie, P., Eydoux, C., Hnawia, E., Stuhl, L., Maciuk, A., Lebouvier, N., Canard, B., Figadère, B., Guillemot, J. C., & Nour, M. (2012). Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Medica, 78(7), 672-677. https://doi.org/10.1055/s-0031-1298355
Coulerie, P., Nour, M., Maciuk, A., Eydoux, C., Guillemot, J. C., Lebouvier, N., Hnawia, E., Leblanc, K., Lewin, G., Canard, B., & Figadère, B. (2013). Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Medica, 79(14), 1313-1318. https://doi.org/10.1055/s-0033-1350672
Dassault Systèmes BIOVIA, Discovery Studio Visualizer, version 20.1, San Diego: Dassault Systèmes, 2019. (s. f.).
de Freitas, C. S., Rocha, M. E. N., Sacramento, C. Q., Marttorelli, A., Ferreira, A. C., Rocha, N., de Oliveira, A. C., de Oliveira Gomes, A. M., dos Santos, P. S., da Silva, E. O., da Costa, J. P., de Lima Moreira, D., Bozza, P. T., Silva, J. L., Barroso, S. P. C., & Souza, T. M. L. (2020). Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Current Topics in Medicinal Chemistry, 20(2), 111-120. https://doi.org/10.2174/1568026620666191219150738
de Sousa, L. R. F., Wu, H., Nebo, L., Fernandes, J. B., da Silva, M. F. das G. F., Kiefer, W., Kanitz, M., Bodem, J., Diederich, W. E., Schirmeister, T., & Vieira, P. C. (2015). Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorganic & Medicinal Chemistry, 23(3), 466-470. https://doi.org/10.1016/j.bmc.2014.12.015
Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S. A., Palese, P., & Baric, R. S. (2007). Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane. Journal of Virology, 81(18), 9812-9824. https://doi.org/10.1128/JVI.01012-07
Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1-9.
Hansson, T., Marelius, J., & Åqvist, J. (1998). Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, 12(1), 27-35. https://doi.org/10.1023/A:1007930623000
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1(14), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
Islam, M. T., Zihad, S. M. N. K., Rahman, M. S., Sifat, N., Khan, M. R., Uddin, S. J., & Rouf, R. (2019). Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life, 71(9), 1192-1200. https://doi.org/10.1002/iub.2053
Janković, S. (2020). Current status and future perspective of coronavirus disease 2019: A review. Scripta Medica, 51(2), 101-109. https://doi.org/10.5937/scriptamed51-27183
Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859-1865. https://doi.org/10.1002/jcc.20945
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. https://doi.org/10.1063/1.445869
Kim, Seonghoon, Lee, J., Jo, S., Brooks, C. L., Lee, H. S., & Im, W. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry, 38(21), 1879-1886. https://doi.org/10.1002/jcc.24829
Kim, Sunghwan, Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem Substance and Compound databases. Nucleic Acids Research, 44(D1), D1202-D1213. https://doi.org/10.1093/nar/gkv951
Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 12(1), 405-413. https://doi.org/10.1021/acs.jctc.5b00935
Lee, W. P., Lan, K. L., Liao, S. X., Huang, Y. H., Hou, M. C., & Lan, K. H. (2018). Inhibitory Effects of Amentoflavone and Orobol on Daclatasvir-Induced Resistance-Associated Variants of Hepatitis C Virus. The American Journal of Chinese Medicine, 46(04), 835-852. https://doi.org/10.1142/S0192415X18500441
Li, F., Song, X., Su, G., Wang, Y., Wang, Z., Jia, J., Qing, S., Huang, L., Wang, Y., Zheng, K., & Wang, Y. (2019). Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses, 11(5), 466. https://doi.org/10.3390/v11050466
Li, J. Y., Liao, C. H., Wang, Q., Tan, Y. J., Luo, R., Qiu, Y., & Ge, X. Y. (2020). The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Research, 286, 198074. https://doi.org/10.1016/j.virusres.2020.198074
Liang, J., Pitsillou, E., Karagiannis, C., Darmawan, K. K., Ng, K., Hung, A., & Karagiannis, T. C. (2020). Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex. Computational Biology and Chemistry, 87, 107292. https://doi.org/10.1016/j.compbiolchem.2020.107292
Lin, Y.-M., Anderson, H., Flavin, M. T., Pai, Y. H. S., Mata-Greenwood, E., Pengsuparp, T., Pezzuto, J. M., Schinazi, R. F., Hughes, S. H., & Chen, F.-C. (1997). In Vitro Anti-HIV Activity of Biflavonoids Isolated from Rhus succedanea and Garcinia multiflora. Journal of Natural Products, 60(9), 884-888. https://doi.org/10.1021/np9700275
Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. I., Huffmann, J. H., & Kern, E. R. (1999). Antiviral Activities of Biflavonoids. Planta Medica, 65(2), 120-125. https://doi.org/10.1055/s-1999-13971
Liu, C., Cai, D., Zhang, L., Tang, W., Yan, R., Guo, H., & Chen, X. (2016). Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA. Antiviral Research, 134, 97-107. https://doi.org/10.1016/j.antiviral.2016.08.026
Liu, H., & Hou, T. (2016). CaFE: A tool for binding affinity prediction using end-point free energy methods. Bioinformatics, 32(14), 2216-2218. https://doi.org/10.1093/bioinformatics/btw215
Ma, S. C., But, P. P., Ooi, V. E., He, Y. H., Lee, S. H., Lee, S. F., & Lin, R. C. (2001). Antiviral amentoflavone from Selaginella sinensis. Biological & Pharmaceutical Bulletin, 24(3), 311-312. https://doi.org/10.1248/bpb.24.311
Mosammaparast, N., & Pemberton, L. F. (2004). Karyopherins: From nuclear-transport mediators to nuclear-function regulators. Trends in Cell Biology, 14(10), 547-556. https://doi.org/10.1016/j.tcb.2004.09.004
Nieto, A., de la Luna, S., Bárcena, J., Portela, A., & Ortín, J. (1994). Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit. Journal of General Virology, 75(1), 29-36. https://doi.org/10.1099/0022-1317-75-1-29
Nonaka, G., Nishioka, I., Nishizawa, M., Yamagishi, T., Kashiwada, Y., Dutschman, G. E., Bodner, A. J., Kilkuskie, R. E., Cheng, Y. C., & Lee, K. H. (1990). Anti-Aids Agents, 2: Inhibitory Effect of Tannins on HIV Reverse Transcriptase and HIV Replication in H9 Lymphocyte Cells. Journal of Natural Products, 53(3), 587-595. https://doi.org/10.1021/np50069a008
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. https://doi.org/10.1002/jcc.20289
Pumroy, R., & Cingolani, G. (2015). Diversification of importin-α isoforms in cellular trafficking and disease states. The Biochemical journal. https://doi.org/10.1042/BJ20141186
Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., Naguyen, T. T. H., Park, S. J., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940-7947. https://doi.org/10.1016/j.bmc.2010.09.035
Shahraki, O., Zargari, F., Edraki, N., Khoshneviszadeh, M., Firuzi, O., & Miri, R. (2018). Molecular dynamics simulation and molecular docking studies of 1,4-Dihydropyridines as P-glycoprotein’s allosteric inhibitors. Journal of Biomolecular Structure and Dynamics, 36(1), 112-125. https://doi.org/10.1080/07391102.2016.1268976
Suručić, R., Tubić, B., Stojiljković, M. P., Djuric, D. M., Travar, M., Grabež, M., Šavikin, K., & Škrbić, R. (2020). Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-020-03981-7
Timani, K. A., Liao, Q., Ye, L., Zeng, Y., Liu, J., Zheng, Y., Ye, L., Yang, X., Lingbao, K., Gao, J., & Zhu, Y. (2005). Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Research, 114(1), 23-34. https://doi.org/10.1016/j.virusres.2005.05.007
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
Vane, J. R., & Botting, R. M. (2003). The mechanism of action of aspirin. Thrombosis Research, 110(5), 255-258. https://doi.org/10.1016/S0049-3848(03)00379-7
Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671-690. https://doi.org/10.1002/jcc.21367
Wilsky, S., Sobotta, K., Wiesener, N., Pilas, J., Althof, N., Munder, T., Wutzler, P., & Henke, A. (2012). Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Archives of Virology, 157(2), 259-269. https://doi.org/10.1007/s00705-011-1164-z
Wulan, W. N., Heydet, D., Walker, E. J., Gahan, M. E., & Ghildyal, R. (2015). Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00553
Yang, S. N. Y., Atkinson, S. C., Wang, C., Lee, A., Bogoyevitch, M. A., Borg, N. A., & Jans, D. A. (2020). The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Research, 177, 104760. https://doi.org/10.1016/j.antiviral.2020.104760
Yin, D., Li, J., Lei, X., Liu, Y., Yang, Z., & Chen, K. (2014). Antiviral Activity of Total Flavonoid Extracts from Selaginella moellendorffii Hieron against Coxsackie Virus B3 In Vitro and In Vivo. Evidence-based Complementary and Alternative Medicine : eCAM, 2014. https://doi.org/10.1155/2014/950817
Yu, S., Yan, H., Zhang, L., Shan, M., Chen, P., Ding, A., & Li, S. F. Y. (2017). A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules, 22(2), 299. https://doi.org/10.3390/molecules22020299
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Elvio Gayozo, Laura Rojas, Julio Barrios. (2025). Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach. Biotecnia, 27, p.e2485. https://doi.org/10.18633/biotecnia.v27.2485.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).





