Comparación ecotoxicológica al Cloruro de Sodio en Hydra vulgaris e Hydra viridissima
Ecotoxicological comparison to Sodium Chloride in Hydra vulgaris and Hydra viridissima
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n1.96258Palabras clave:
Hidrozoos, sensibilidad, ecotoxicidad, salinización, agua dulce (es)Hydrozoans, sensitivity, ecotoxicity, salinization, freshwater (en)
Descargas
El aumento de la salinidad en los ecosistemas de agua dulce genera preocupación sobre los efectos adversos que puede provocar sobre las especies dulceacuícolas y el suelo. Las concentraciones óptimas de iones de sodio y calcio para que las especies del género Hydra tengan condiciones fisiológicas adecuadas son relativamente bajas. Este trabajo se enfocó en comparar la sensibilidad de H. vulgaris e H. viridissima frente al cloruro de sodio (NaCl). Las especies fueron mantenidas bajo condiciones de fotoperiodo, iluminación y temperatura controladas. Se obtuvieron las tasas de crecimiento y en ensayos de toxicidad aguda se calcularon las CE50 (Concentración efectiva media) y CL50 (Concentración letal media) como indicadores de la sensibilidad al NaCl. H. vulgaris fue más sensible al NaCl dado que la CL50-96h fue de 1,0 g/l NaCl (entre 0,8 – 1,2 g/l como intervalo de confianza al 95%), mientras que H. viridissima presentó una CL50-96h promedio de 2,6 g/l (entre 2,0 – 3,3 g/l como intervalo de confianza del 95%). Se considera que esta última fue más tolerante al NaCl, probablemente por la relación simbiótica con la microalga Chlorella vulgaris, ya que podría generar un efecto protector. Se espera que comprender el comportamiento de estos biomodelos respecto al aumento de la salinización permita la evaluación temprana de riesgos ecológicos en ecosistemas acuáticos tropicales.
The increase in salinity in freshwater ecosystems raises concern about the adverse effects that it can cause in freshwater species and the soil. The sodium and calcium ions optimum concentrations required for genus Hydra to have adequate physiological conditions are relatively low. This research compared the H. vulgaris and H. viridissima sodium chloride (NaCl) sensitivity. The species were propagated under photoperiod, lighting and temperature-controlled conditions. The growth rates were obtained and EC50 (mean effective concentration) and LC50 (mean lethal concentration) were calculated by means of acute toxicity tests as indicators of sensitivity to NaCl. For H. vulgaris the LC50-96h was 1.0 g/l of NaCl with a range between 0.8 - 1.2 g/l of NaCl, compared to H. viridissima presented an average LC50-96h of 2.6 g/l of NaCl with a 95% confidence interval between 2.0 - 3.3 g/l of NaCl. The H. viridissima was more tolerant, probably the symbiotic relationship with Chlorella vulgaris, can generate a protective effect. Understanding the behavior of these species with respect to increased salinization can allow an early assessment of ecological risks in tropical aquatic ecosystems.
Referencias
Adelman, I. R., Smith Jr, L. L., & Siesennop, G. D. (1976). Acute toxicity of sodium chloride, pentachlorophenol, Guthion®, and hexavalent chromium to fathead minnows (Pimephales promelas) and goldfish (Carassius auratus). Journal of the Fisheries Board of Canada, 33(2), 203-208. DOI: https://doi.org/10.1139/f76-030
Auclair, J., Quinn, B., Peyrot, C., Wilkinson, K. J., & Gagné, F. (2020). Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata. Environmental Science and Pollution Research, 1-10. DOI: https://doi.org/10.1007/s11356-020-07728-1
Barrera, J. A., Espinosa, A. J., & Álvarez, J. P. (2019). Contaminación en el Lago de Tota, Colombia: toxicidad aguda en Daphnia magna (Cladocera: Daphniidae) e Hydra attenuata (Hydroida: Hydridae). Revista de Biología Tropical, 67(1), 11-23. DOI: https://doi.org/10.15517/rbt.v67i1.33573
Blaise, C., & Kusui, T. (1997). Acute toxicity assessment of industrial effluents with a microplate-based Hydra attenuata assay. Environmental Toxicology, 12: 53-60. DOI: https://doi.org/10.1002/(SICI)1098-2256(1997)12:1<53::AID-TOX8>3.0.CO;2-7
Blaise, C., Gagné, F., Harwood, M., Quinn, B., & Hanana, H. (2018). Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements. Ecotoxicology and environmental safety, 163, 486-491. DOI: https://doi.org/10.1016/j.ecoenv.2018.07.033
Böttger, A., Doxey, A. C., Hess, M. W., Pfaller, K., Salvenmoser, W., Deutzmann, R., ... & David, C. N. (2012). Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth) families. PLoS One, 7(12), e52278. DOI: https://doi.org/10.1371/journal.pone.0052278
Bouillon, J., Gravili, C., Gili, J. M., & Boero, F. (2006). An introduction to Hydrozoa. Mémoires du Muséum national d'Histoire naturelle (1936).
Buratini, S. V., Bertoletti, E., & Zagatto, P. A. (2004). Evaluation of Daphnia similis as a test species in ecotoxicological assays. Bulletin of environmental contamination and toxicology, 73(5), 878-882. DOI: https://doi.org/10.1007/s00128-004-0508-8
Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schafer RB, Schulz, C. J. (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167. DOI: https://doi.org/10.1016/j.envpol.2012.10.011
Cañedo-Argüelles, M., Sala, M., Peixoto, G., Prat, N., Faria, M., Soares, A. M., ... & Kefford, B. (2016). Can salinity trigger cascade effects on streams? A mesocosm approach. Science of the Total Environment, 540, 3-10. DOI: https://doi.org/10.1016/j.scitotenv.2015.03.039
Cowgill, U. M., & Milazzo, D. P. (1991). The sensitivity of two cladocerans to water quality variables: salinity< 467 mg NaCl/L and hardness< 200 mg CaCO 3/L. Archives of Environmental Contamination and Toxicology, 21(2), 218-223. DOI: https://doi.org/10.1007/BF01055340
Díaz, M. C., Bustos, M. C., & Espinosa, A. J. (2004). Pruebas de Toxicidad acuática: Fundamentos y métodos. Colección Textos. UNIBIBLOS. Universidad Nacional de Colombia. Bogotá.
Dornelas, A. S. P., Sarmento, R. A., Cavallini, G. S., da Silva Barbosa, R., Vieira, M. M., de Souza Saraiva, A., ... & Pestana, J. L. (2020). Lethal and sublethal effects of the saline stressor sodium chloride on Chironomus xanthus and Girardia tigrina. Environmental Science and Pollution Research, 27(27), 34223-34233. DOI: https://doi.org/10.1007/s11356-020-09556-9
Espinosa Ramírez, A. J. (2018). El agua, un reto para la salud pública: la calidad del agua y las oportunidades para la vigilancia en salud ambiental. Doctorado Interfacultades en Salud Pública. Universidad Nacional de Colombia.
Flórez, S. L., Miranda, D., & Chaves, B. (2008). Dinámica de nutrientes en la fase vegetativa del cultivo del lulo (Solanum quitoense Lam.), en respuesta a salinidad con NaCl. Agronomía Colombiana, 26(2), 205-216.
Goffredo, S., & Dubinsky, Z. (Eds.). (2016). The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters. Springer. DOI: https://doi.org/10.1007/978-3-319-31305-4
Hamada, M., Schröder, K., Bathia, J., Kürn, U., Fraune, S., Khalturina, M., ... & Bosch, T. C. (2018). Metabolic co-dependence drives the evolutionarily ancient Hydra–Chlorella symbiosis. Elife, 7, e35122. DOI: https://doi.org/10.7554/eLife.35122
Hassell KL, Kefford BJ, Nugegoda D (2006) Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). J Exp Biol 209:4024–4032. DOI: https://doi.org/10.1242/jeb.02457
Hoffmeister‐Ullerich, S. A., Herrmann, D., Kielholz, J., Schweizer, M., & Schaller, H. C. (2002). Isolation of a putative peroxidase, a target for factors controlling foot‐formation in the coelenterate hydra. European journal of biochemistry, 269(18), 4597-4606. DOI: https://doi.org/10.1046/j.1432-1033.2002.03159.x
Ishikawa, M., Yuyama, I., Shimizu, H., Nozawa, M., Ikeo, K., & Gojobori, T. (2016). Different endosymbiotic interactions in two hydra species reflect the evolutionary history of endosymbiosis. Genome biology and evolution, 8(7), 2155-2163. DOI: https://doi.org/10.1093/gbe/evw142
Kaliszewicz, A., & Lipińska, A. (2013). Environmental condition related reproductive strategies and sex ratio in hydras. Acta Zoologica, 94(2), 177-183. DOI: https://doi.org/10.1111/j.1463-6395.2011.00536.x
Karntanut, W., & Pascoe, D. (2002). The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa). Chemosphere, 47(10), 1059-1064. DOI: https://doi.org/10.1016/S0045-6535(02)00050-4
Kawaida, H., Ohba, K., Koutake, Y., Shimizu, H., Tachida, H., & Kobayakawa, Y. (2013). Symbiosis between Hydra and Chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution. Molecular phylogenetics and evolution, 66(3), 906-914. DOI: https://doi.org/10.1016/j.ympev.2012.11.018
Kefford BJ, Buchwalter D, Cañedo-Argüelles M, Davis J, Duncan RP, Hoffmann A, Thompson R (2016) Salinized rivers: degraded systems or new habitats for salttolerant faunas? Biol Lett 12:1–7. DOI: https://doi.org/10.1098/rsbl.2015.1072
Kobayakawa, Y. (2017). Symbiosis between green algae and hydra. In Algal and cyanobacteria symbioses, Eds., Grube, M., Seckbach, J., & Muggia, L. (2017). World Scientific. (pp. 347-369). DOI: https://doi.org/10.1142/9781786340580_0011
Lee, A. H., Fraz, S., Purohit, U., Campos, A. R., & Wilson, J. Y. (2020). Chronic exposure of Brown (Hydra oligactis) and green Hydra (Hydra viridissima) to environmentally relevant concentrations of pharmaceuticals. Science of The Total Environment, 139232. DOI: https://doi.org/10.1016/j.scitotenv.2020.139232
McKinley, K., McLellan, I., Gagné, F., & Quinn, B. (2019). The toxicity of potentially toxic elements (Cu, Fe, Mn, Zn and Ni) to the cnidarian Hydra attenuata at environmentally relevant concentrations. Science of the Total Environment, 665, 848-854. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.193
Murphy, F., & Quinn, B. (2018). The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environmental pollution, 234, 487-494. DOI: https://doi.org/10.1016/j.envpol.2017.11.029
Pal S, Chakraborty K (2017) Different aspects of chloride in freshwater: a review. Inter J Curr Trends Sci Tech 7:20295–20303.
Prouse, A. E., Hogan, A. C., Harford, A. J., van Dam, R. A., & Nugegoda, D. (2015). Hydra viridissima (green Hydra) rapidly recovers from multiple magnesium pulse exposures. Environmental toxicology and chemistry, 34(8), 1734-1743. DOI: https://doi.org/10.1002/etc.2966
Quinn, B., Gagné, F., & Blaise, C. (2009). Evaluation of the acute, chronic and teratogenic effects of a mixture of eleven pharmaceuticals on the cnidarian, Hydra attenuata. Science of the Total Environment, 407(3), 1072-1079. DOI: https://doi.org/10.1016/j.scitotenv.2008.10.022
Quinn, B., Gagné, F., & Blaise, C. (2012). Hydra, a model system for environmental studies. Int. J. Dev. Biol, 56: 613-625. DOI: https://doi.org/10.1387/ijdb.113469bq
Rind K, Beyrend D, Charmantier G, Cucchi P, Lignot J (2017) Effects of different salinities on the osmoregulatory capacity of Mediterranean Sticklebacks living in freshwater. J Zool 303:270–280. DOI: https://doi.org/10.1111/jzo.12491
Santos, M. A. P. F., Vicensotti, J., & Monteiro, R. T. R. (2007). Sensitivity of four test organisms (Chironomus xanthus, Daphnia magna, Hydra attenuata and Pseudokirchneriella subcapitata) to NaCl: an alternative reference toxicant. Journal of the Brazilian Society of Ecotoxicology, 2(3): 229-236. DOI: https://doi.org/10.5132/jbse.2007.03.004
Santos, V. S. V., Campos, C. F., de Campos Júnior, E. O., & Pereira, B. B. (2018). Acute ecotoxicity bioassay using Dendrocephalus brasiliensis: alternative test species for monitoring of contaminants in tropical and subtropical freshwaters. Ecotoxicology, 27(6), 635-640. DOI: https://doi.org/10.1007/s10646-018-1951-3
Schuler, M. S., Cañedo-Argüelles, M., Hintz, W. D., Dyack, B., Birk, S., & Relyea, R. A. (2019). Regulations are needed to protect freshwater ecosystems from salinization. Philosophical Transactions of the Royal Society B, 374(1764), 20180019. DOI: https://doi.org/10.1098/rstb.2018.0019
Thornton, K. W., & Sauer, J. R. (1972). Physiological effects of NaCl on Chironomus attenuatus (Diptera: Chironomidae). Annals of the Entomological Society of America, 65(4), 872-875. DOI: https://doi.org/10.1093/aesa/65.4.872
Tökölyi, J., Rosa, M. E., Bradács, F., & Barta, Z. (2014). Life history trade-offs and stress tolerance in green hydra (Hydra viridissima Pallas 1766): the importance of nutritional status and perceived population density. Ecological research, 29(5), 867-876. DOI: https://doi.org/10.1007/s11284-014-1176-8
Toekoelyi, J., Bradacs, F., Hóka, N., Kozma, N., Miklos, M., Mucza, O., ... & Barta, Z. (2016). Effects of food availability on asexual reproduction and stress tolerance along the fast–slow life history continuum in freshwater hydra (Cnidaria: Hydrozoa). Hydrobiologia, 766(1), 121-133. DOI: https://doi.org/10.1007/s10750-015-2449-0
Trottier, S., Blaise, C., Kusui, T., & Johnson, E. M. (1997). Acute toxicity Assessment of Aqueous Samples Using a Microplate-based Hydra attenuata Assay. Environmental Toxicology, 12: 265-271. DOI: https://doi.org/10.1002/(SICI)1098-2256(1997)12:3<265::AID-TOX10>3.0.CO;2-9
USEPA - Environmental Protection Agency (1988). Ambient water quality criteria for chloride, EPA-440-5-88-001. Office of Water, Washington, DC.
U.S.EPA., 1990. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fourth Edition. Report 600/4-90/027F.
Vander Vorste, R., Timpano, A. J., Cappellin, C., Badgley, B. D., Zipper, C. E., & Schoenholtz, S. H. (2019). Microbial and macroinvertebrate communities, but not leaf decomposition, change along a mining‐induced salinity gradient. Freshwater Biology, 64(4), 671-684. DOI: https://doi.org/10.1111/fwb.13253
Venâncio, C., Savuca, A., Oliveira, M., Martins, M. A., & Lopes, I. (2020). Polymethylmethacrylate nanoplastics effects on the freshwater cnidarian Hydra viridissima. Journal of Hazardous Materials, 402, 123773. DOI: https://doi.org/10.1016/j.jhazmat.2020.123773
Yamamoto, W., & Yuste, R. (2020). Whole-body imaging of neural and muscle activity during behavior in Hydra vulgaris: effect of osmolarity on contraction bursts. Eneuro, 7(4). DOI: https://doi.org/10.1523/ENEURO.0539-19.2020
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).