Producción de biomasa y caracterización química de Lentinula edodes cultivado en biorreactor bajo diferentes condiciones
Biomass production and chemical characterization of Lentinula edodes grown in a bioreactor under different conditions
DOI:
https://doi.org/10.15446/rev.colomb.biote.v25n1.96477Palabras clave:
Macromiceto, esteroles, azúcares, proteína, biotecnología (es)Macromycete, sterols, sugars, protein, biotechnology (en)
Descargas
La ingeniería bioquímica juega un papel importante en el desarrollo tecnológico de los procesos de obtención ya sea de cuerpos fructíferos de setas con potencial medicinal para el consumo directo, o en la fabricación de nutracéuticos y/o suplementos dietarios. Esta investigación implementó una metodología en biorreactor para el cultivo del hongo macromiceto Lentinula edodes, conocido comúnmente como Shiitake, con el objetivo de evaluar el efecto que tienen la velocidad de agitación y el flujo de aire en la producción de biomasa y de metabolitos de mediana y baja polaridad. Se determinó que el rendimiento y la productividad más altos de producción de biomasa se logra a unas condiciones de 80 rpm y 0,50 vvm obteniendo 0,0260 g/g y 0,00433 g/L*h respectivamente. Igualmente, en cuanto a la composición de esta biomasa, se concluyó que se genera un máximo contenido de proteína (33,4% del micelio liofilizado) a unas condiciones de 140 rpm y 0,75 vvm, los esteroles alcanzaron un porcentaje de 89,32% del extracto en DCM a 80 rpm y 0,5 vvm. Los resultados del análisis por GC-MS confirman la amplia variedad de compuestos que se pueden obtener a partir de un cultivo en biorreactor del hongo Lentinula edodes.
Biochemical engineering plays an important role in the technological development of the processes for obtaining either mushroom fruiting bodies with medicinal potential for direct consumption, or in the manufacture of nutraceuticals and/or dietary supplements. This research implemented a methodology in a bioreactor for the cultivation of the Lentinula edodes macromycete fungus, commonly known as Shiitake, with the aim of evaluating the effect of agitation speed and air flow on the production of biomass and metabolites of median and low polarity. Thus, it was found that the highest yield and productivity of biomass production is achieved at conditions of 80 rpm and 0,50 vvm, obtaining 0,0260 g/g and 0,00433 g/L*h respectively. Likewise, in the study of the content of metabolites it was concluded that for the protein 33,4% of the lyophilized mycelium was reached at conditions of 140 rpm and 0,75 vvm, the sterols reached a percentage of 89,32% of the extract. in DCM at 80 rpm and 0,5 vvm. The results of the GC-MS analysis confirm the wide variety of compounds that can be obtained from a bioreactor culture of the Lentinula edodes fungus.
Referencias
Agudelo-Escobar, L. M., Gutiérrez-López, Y., Urrego-Restrepo, S. (2017). Efecto de la aireación, la agitación y el pH sobre la producción de biomasa micelial y exopolisacáridos del hongo filamentoso Ganoderma lucidum. DYNA, 84(200), 73–79. https://doi.org/10.15446/dyna.v84n200.57126 DOI: https://doi.org/10.15446/dyna.v84n200.57126
Ávila, R., Rivas, B., Hernández, R., Chirinos, M. (2012). Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias, 12(2), 129–135. http://www.redalyc.org.
Bakratsas, G., Polydera, A., Katapodis, P., & Stamatis, H. (2021). Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods, 4, 1–14. https://doi.org/10.1016/j.fufo.2021.100086 DOI: https://doi.org/10.1016/j.fufo.2021.100086
Berovic, M., Podgornik, B. B., & Gregori, A. (2022). Cultivation technologies for production of medicinal mushroom biomass: Review. International Journal of Medicinal Mushrooms, 24(2), 1–17. https://doi.org/10.1615/IntJMedMushrooms.2021042445 DOI: https://doi.org/10.1615/IntJMedMushrooms.2021042445
Bhambri, A., Srivastava, M., Mahale, V. G., Mahale, S., Karn, S. K. (2022). Mushrooms as potential sources of active metabolites and medicines. Frontiers in Microbiology, 13, 3–13. https://doi.org/10.3389/fmicb.2022.837266 DOI: https://doi.org/10.3389/fmicb.2022.837266
Çaǧlarirmak, N. (2007). The nutrients of exotic mushrooms (Lentinula edodes and Pleurotus species) and an estimated approach to the volatile compounds. Food Chemistry, 105(3), 1188–1194. https://doi.org/10.1016/j.foodchem.2007.02.021 DOI: https://doi.org/10.1016/j.foodchem.2007.02.021
Chegwin, C., Nieto, I. J. (2014). Effect of non-conventional carbon sources on the production of triterpenoids in submerged cultures of Pleurotus macrofungi. Journal of the Chilean Chemical Society, 59(1), 2287–2293. https://doi.org/10.4067/S0717-97072014000100010 DOI: https://doi.org/10.4067/S0717-97072014000100010
Cheung, P. (2010). The nutritional and health benefits of mushrooms. Nutrition Bulletin, 35(4), 292–299. https://doi.org/10.1111/j.1467-3010.2010.01859.x DOI: https://doi.org/10.1111/j.1467-3010.2010.01859.x
Cheung, Peter C. (2009). Mushrooms as functional foods. 130. https://doi.org/10.1002/9780470367285 DOI: https://doi.org/10.1002/9780470367285
Das, A. K., Nanda, P. K., Dandapat, P., Bandyopadhyay, S., Gullón, P., Sivaraman, G. K., McClements, D. J., Gullón, B., & Lorenzo, J. M. (2021). Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules, 26(9), 1–8. https://doi.org/10.3390/molecules26092463 DOI: https://doi.org/10.3390/molecules26092463
Domingos, M., Souza-Cruz, P. B. de, Ferraz, A., & Prata, A. M. R. (2017). A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chemical Engineering Science, 170, 670–676. https://doi.org/10.1016/j.ces.2017.04.004 DOI: https://doi.org/10.1016/j.ces.2017.04.004
Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2008). Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. Journal of Agricultural and Food Chemistry, 56(8), 2609–2612. https://doi.org/10.1021/jf800091a DOI: https://doi.org/10.1021/jf800091a
Gibbs, P. A., Seviour, R. J., & Schmid, F. (2000). Growth of filamentous fungi in submerged culture: Problems and possible solutions. Critical Reviews in Biotechnology, 20(1), 17–48. https://doi.org/10.1080/07388550091144177 DOI: https://doi.org/10.1080/07388550091144177
Jasinghe, V. J., Perera, C. O. (2005). Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chemistry, 92(3), 541–546. https://doi.org/10.1016/j.foodchem.2004.08.022 DOI: https://doi.org/10.1016/j.foodchem.2004.08.022
Kalač, P. (2016). Edible Mushrooms: Chemical Composition and Nutritional Value. Edible Mushrooms: Chemical Composition and Nutritional Value, 1–207. https://doi.org/10.1016/C2015-0-00471-3 DOI: https://doi.org/10.1016/B978-0-12-804455-1.00001-1
Kirsch, L. de S., de Macedo, A. J. P., & Teixeira, M. F. S. (2016). Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus. Brazilian Journal of Microbiology, 47(3), 658–664. https://doi.org/10.1016/j.bjm.2016.04.007 DOI: https://doi.org/10.1016/j.bjm.2016.04.007
Koutinas, A. A., Wang, R., & Webb, C. (2003). Estimation of fungal growth in complex, heterogeneous culture. Biochemical Engineering Journal, 14(2), 93–100. https://doi.org/10.1016/S1369-703X(02)00154-7 DOI: https://doi.org/10.1016/S1369-703X(02)00154-7
Kour H., Kour D., Kour S., Singh S., Azhar S., Hashmi J., Nath A., Kumar K., Pal Y. Singh A. (2022). Bioactive compounds from mushrooms: Emerging bioresources of food and nutraceuticals. Food Bioscience 50 102124. https://doi.org/10.1016/j.fbio.2022.102124 DOI: https://doi.org/10.1016/j.fbio.2022.102124
Li, S., Wang, A., Liu, L., Tian, G., Wei, S., & Xu, F. (2018). Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipes. Journal of Food Measurement and Characterization, 12(3), 2012–2019. https://doi.org/10.1007/s11694-018-9816-2 DOI: https://doi.org/10.1007/s11694-018-9816-2
López, D., Gutiérrez, A., Esqueda, M. (2013). Cinética de crecimiento y composición química del micelio de. Revista Mexicana de Micología, 37, 51–59. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S018731802013000100007&lng=es&nrm=iso&tlng=es
Maity P., Sen I., Chakraborty I., Mondal S, Bar H, Bhanja S., Mandal S, Nath G. (2021). Biologically active polysaccharide from edible mushrooms: A review. International Journal of Biological Macromolecules. Volume 172. 408-417. https://doi.org/10.1016/j.ijbiomac.2021.01.081. DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.081
Miles, P. G., & Chang, S.-T. (2004). Mushrooms : Cultivation, nutritional value, medicinal effect, and environmental impact. https://doi.org/10.1201/9780203492086 DOI: https://doi.org/10.1201/9780203492086
Mubbasher Sabir, S., Hayat, I., & Dilnawaz Ahmed, S. (2003). Estimation of sterols in edible fats and oils. Pakistan Journal of Nutrition, 2(3), 178–181. https://doi.org/10.3923/pjn.2003.178.181 DOI: https://doi.org/10.3923/pjn.2003.178.181
Okuda, Y. (2022). Sustainability perspectives for future continuity of mushroom production: The bright and dark sides. Frontiers in Sustainable Food Systems, 6, 1–6. https://doi.org/10.3389/fsufs.2022.1026508 DOI: https://doi.org/10.3389/fsufs.2022.1026508
Özdemir, S., Heerd, D., Quitmann, H., Zhang, Y., Fraatz, M. A., Zorn, H., & Czermak, P. (2017). Process parameters affecting the synthesis of natural flavors by shiitake (Lentinula edodes) during the production of a non-alcoholic beverage. Beverages, 3(2), 1–15. https://doi.org/10.3390/beverages3020020 DOI: https://doi.org/10.3390/beverages3020020
Petre, M., Petre, V. (2015). Biotechnology of mushroom growth through submerged cultivation. Mushroom Biotechnology: Developments and Applications, 1–15. https://doi.org/10.1016/B978-0-12-802794-3.00001-1 DOI: https://doi.org/10.1016/B978-0-12-802794-3.00001-1
Prajapati D., Bhatt A., Gupte S., Gupte A. Mushroom secondary metabolites: chemistry and therapeutic applications. IJPSR, 2021; 12(11): 5677-5689. https://doi.org/10.13040/IJPSR.0975-8232.12(11).5677-89 DOI: https://doi.org/10.13040/IJPSR.0975-8232.12(11).5677-89
Rahman, M. A., Abdullah, N., & Aminudin, N. (2018). Lentinula edodes (shiitake mushroom): An assessment of in vitro anti-atherosclerotic bio-functionality. Saudi Journal of Biological Sciences, 25(8), 1515–1523. https://doi.org/10.1016/j.sjbs.2016.01.021 DOI: https://doi.org/10.1016/j.sjbs.2016.01.021
Smiderle, F. R., Olsen, L. M., Ruthes, A. C., Czelusniak, P. A., Santana-Filho, A. P., Sassaki, G. L., Gorin, P. A. J., & Iacomini, M. (2012). Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydrate Polymers, 87(1), 368–376. https://doi.org/10.1016/j.carbpol.2011.07.063 DOI: https://doi.org/10.1016/j.carbpol.2011.07.063
Suárez, C. (2012). Utilización de la fermentación líquida de Lentinula edodes (shiitake), para la producción de metabolitos secundarios bioactivos y evaluación de su potencial empleo en la producción de un alimento funcional. In Universidad Nacional de Colombia. http://bdigital.unal.edu.co/8989/1/01107463.2012.pdf
Wasser, S. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 60, 258–274 https://doi.org/10.1007/s00253-002-1076-7. DOI: https://doi.org/10.1007/s00253-002-1076-7
Vega-Oliveros, C., Chegwin-Angarita, C., Ardila-Barrantes, H. D. (2019). Conditions for protein analysis of Lentinula edodes mycelium obtained from liquid state fermentation. Revista Colombiana de Quimica, 48(3), 3–12. https://doi.org/10.15446/rev.colomb.quim.v48n3.74843 DOI: https://doi.org/10.15446/rev.colomb.quim.v48n3.74843
Xu, X., Yan, H., Chen, J., & Zhang, X. (2011). Bioactive proteins from mushrooms. Biotechnology Advances, 29(6), 667–674. https://doi.org/10.1016/j.biotechadv.2011.05.003. DOI: https://doi.org/10.1016/j.biotechadv.2011.05.003
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta es una revista de acceso abierto distribuida bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional (CC BY). Se permite el uso, distribución o reproducción en otros medios, siempre que se citen el autor(es) original y la revista, de conformidad con la práctica académica aceptada. El uso, distribución o reproducción está permitido desde que cumpla con estos términos.
Todo artículo sometido a la Revista debe estar acompañado de la carta de originalidad. DESCARGAR AQUI (español) (inglés).