Published

2020-12-01

Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit

Selección de variantes somaclonales de maracuyá (Passiflora edulis var flavicarpa. Deneger) tolerantes a déficit hídrico

SELEÇÃO IN VITRO DE VARIANTES SOMACLONAIS DE MARACUYÁ (Passiflora edulis var flavicarpa, Deneger) TOLERANTE AO DÉFICIT ÁGUA.

DOI:

https://doi.org/10.15446/rev.colomb.biote.v22n2.79623

Keywords:

genetic variability, callogenesis, water stress, genetic improvement (en)
variabilidade genética, calogênese, estresse hídrico, melhoramento genético. (pt)
variabilidad genética, callogénesis, estrés hídrico, mejoramiento genético. (es)

Authors

Climate change will have an impact on the Colombian agricultural sector, by 2050 increases in temperature and distribution of erratic rainfall are expected. Passion fruit cultivation does not tolerate water deficit, it reduces flower induction, generates fruit drop and defoliation. To tackle this problem, somaclonal variants (VS) of passion fruit were selected in-vitro, seeking tolerance to water deficit. Four phases were developed: I) callogenesis, II) direct and indirect organogenesis, II) Induction and evaluation of the water deficit with Polyethylene glycol 6000 (PEG 6000) and IV) in vitro selection of VS by morphometric measurements, chlorophyll and total sugars contents. Differences in callogenesis were found with different concentrations of 2,4-D, the concentration of 2 mg • L-1 presented better results producing calluses in less time and in greater quantity (8 days, 90% of the leaf area). In indirect and direct organogenesis the medium MS + ANA + BAP (0.3: 0.6), showed significant statistical differences with respect to other means, for the variables root length (15.14 cm), stem (16.72 cm) and leaves ( 14.51 cm) and root thickness (0.76 cm) stem (1.25) and leaf width (6.75). The influence of PEG 6000 showed significant differences, the treatment with 30 g • L-1 showed the smallest leaf width, the greatest width was found in 25 g • L-1. Statistical differences were found in chlorophyll levels and total sugar contents, the highest contents were recorded in the VS 25VS1, showing the possibility of obtaining seedlings tolerant to the water deficit of passion fruit by inducing somaclonal variation.

El cambio climático tendrá impactos en el sector agropecuario colombiano, para el 2050 se prevén aumentos de temperatura y distribución de lluvias erráticas. El cultivo de maracuyá no tolera el déficit hídrico, este disminuye la inducción floral, genera caída de frutos y defoliación. Para abordar esta problemática se seleccionaron in-vitro variantes somaclonales (VS) de maracuyá, buscando tolerancia al déficit hídrico. Se desarrollaron cuatro fases: I) callogénesis, II) organogénesis directa e indirecta, III) Inducción y evaluación del déficit hídrico con Polientilenglicol 6000 (PEG 6000) y IV) selección in vitro de VS por mediciones morfométricas, contenidos de clorofila y azúcares totales. Se hallaron diferencias en callogénesis con diferentes concentraciones de 2,4-D, la concentración de 2 mg·L-1 presentó mejores resultados produciendo callos en menor tiempo y en mayor cantidad (8 días, 90% del área foliar); en organogénesis indirecta y directa el medio MS + ANA + BAP (0.3:0.6), mostró diferencias estadísticas significativas respecto a otros medios, para las variables longitud de raíz (15.14 cm), tallo (16.72 cm) y hojas (14.51 cm) y grosor de raíz (0.76 cm) tallo (1.25) y ancho de hojas (6.75). La influencia de PEG 6000 mostró diferencias significativas, el tratamiento con 30 g·L-1 mostró menor ancho de hojas, el mayor ancho se encontró en 25 g·L-1. Se hallaron diferencias estadísticas en niveles de clorofila y contenidos de azúcares totales, los mayores contenidos se registraron en el VS 25VS1, mostrando la posibilidad de obtener plántulas tolerantes al déficit hídrico de maracuyá mediante la inducción de variación somaclonal.

A mudança climática terá impactos no setor agrícola na Colômbia, até 2050, aumentos de temperatura e distribuição irregular de chuvas são esperados. O maracujá não tolera períodos secos prolongados, causando pouca indução floral, queda de frutos e desfolha da planta. Diante desse problema, a seleção in vitro das variantes somaclonais (VS) do maracujá foi banhada, buscando tolerância ao déficit hídrico; Foi desenvolvido em quatro fases: I) calogênese, II) organogênese direta e indireta, III) Indução de deficiência hídrica com PEG, IV) seleção in vitro de VS. Diferenças significativas foram encontradas na calogênese com diferentes concentrações de 2,4-D, a concentração de 2 mg • L-1 apresentou melhores resultados; na organogênese indireta e direta, o meio MS + ANA + BAP (0,3: 0,6), apresentou melhores médias de desenvolvimento das plântulas. A influência do PEG mostrou diferenças significativas, onde o tratamento com a concentração de 30 g • L-1 apresentou menor largura de folhas, a maior largura foi encontrada na concentração de 25 g • L-1 e semelhante a 20 g • L-1 , diferenças estatísticas foram encontradas em termos de teores de clorofila e teores totais de açúcar, os maiores teores foram registrados em um VS semeado em meio com PEG 25 g • L-1. A muda que apresentou tolerância ao déficit hídrico, foi a VS codificada como 25VS1. Estes resultados demonstram que era possível obter défice água mudas tolerantes de maracujá por Calogênese, subsequente organogénese indirecta e directa testado com os resultados do teor de clorofila e açúcares totais.

References

Albiski, F., Najla, S., Sanoubar, R., Alkabani, N., & Murshed, R. (2012). In vitro screening of potato lines for drought tolerance. Physiology and Molecular Biology of Plants, 18(4), 315-321. Disponible en: https://doi.org/10.1007/s12298-012-0127-5 DOI: https://doi.org/10.1007/s12298-012-0127-5

Araus, J. L., & Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Current Opinion in Plant Biology, 45(Pt B), 237-247. Disponible en: https://doi.org/10.1016/j.pbi.2018.05.003 DOI: https://doi.org/10.1016/j.pbi.2018.05.003

Carr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (Passiflora edulis sims): a review. Experimental Agriculture, 49(4), 585-596. Disponible en: https://doi.org/10.1017/S0014479713000240 DOI: https://doi.org/10.1017/S0014479713000240

Castañeda-Castro, O., Gómez-Merino, F. C., Trejo-Téllez, L. I., & Pastelín-Solano, M. C. (2015). Osmotic stress induced by polyethylene-glycol alters macronutrient concentrations in sugarcane (Saccharum spp.) Plants in vitro. Agrociencia, 49(8). Disponible en: http://www.redalyc.org/resumen.oa?id=30243055004

Cauz-Santos, L. A., Munhoz, C. F., Rodde, N., Cauet, S., Santos, A. A., Penha, H. A., et al. (2017). The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. Frontiers in Plant Science, 8. Disponible en: https://doi.org/10.3389/fpls.2017.00334 DOI: https://doi.org/10.3389/fpls.2017.00334

Cerqueira-Silva, C. B. M., Jesús, O. N., Santos, E. S. L., Corrêa, R. X., & Souza, A. P. (2014). Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies. International Journal of Molecular Sciences, 15(8), 14122-14152. Disponible en: https://doi.org/10.3390/ijms150814122 DOI: https://doi.org/10.3390/ijms150814122

Chachar, M. H., Chachar, N. A., Chachar, S. D., Chachar, Q. I., Mujtaba, S. M., & Yousafzai, A. (2014). In-vitro screening technique for drought tolerance of wheat (Triticum aestivium L.) genotypes at early seedling stage. 10, 12.

Claro, M. de L., Rodrigues, G. P., & Teixeira, S. A. (2018). Functional properties of yellow passion fruit bark (Passiflora edulis) in metabolic syndrome/Propriedades funcionais da casca do maracuja amarelo (Passiflora edulis) na sindrome metabolica. Recuperado 18 de abril de 2019, de Demetra: Food, Nutrition & Health website. Disponible en: http://link.galegroup.com/apps/doc/A570045921/AONE?sid=googlescholar DOI: https://doi.org/10.12957/demetra.2018.28957

Departamento Administrativo Nacional de Estadística. (2016). Encuesta Nacional Agropecuaria por departamentos. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena/encuesta-nacional-agropecuaria-por-departamentos

Díaz V, Y., Lazo R, H. O., Portilla Ll, J. P., Ponce-Soto, L. A., & Marangoni, S. (2012). Respuesta fisiológica al déficit hídrico in vitro y análisis proteómico preliminar en callos de cuatro cultivares de Allium cepa L. (cebolla). Idesia (Arica), 30(3), 11-21. Disponible en: https://doi.org/10.4067/S0718-34292012000300002 DOI: https://doi.org/10.4067/S0718-34292012000300002

Díaz Valencia, P. A. (2016). Repositorio institucional UN (Masters, Universidad Nacional de Colombia - Sede Medellín). Disponible en: http://www.bdigital.unal.edu.co/51030/

Dubois, M.,. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. DOI: https://doi.org/10.1021/ac60111a017

Eslami, M., Ahmadikhah, A., Azimi, M.-R., & Saeidi, A. (2018). Differential response of an international rice («Oryza sativa» L.) collection to drought simulated stress (PEG) at vegetative stage. Australian Journal of Crop Science, 12(6), 855. DOI: https://doi.org/10.21475/ajcs.18.12.06.PNE545

Fischer, G., & Casierra-Posada, F. (2009). Ecofisiología de las especies pasifloráceas cultivadas en Colombia. 24.

García, L. R., Leiva-Mora, M., Pérez, A. C., Collado, R., Martínez, I. P., Veitía, N. et al. (2015). Efecto del estrés hídrico inducido con PEG 6000 sobre la germinación in vitro de semillas de Phaseolus vulgaris L. cv. ‘ICA Pijao’. Biotecnología Vegetal, 15(4). Disponible en: https://revista.ibp.co.cu/index.php/BV/article/view/502

George, S., Jatoi, S. A., & Siddiqui, S. U. (2013). Genotypic differences against peg simulated drought stress in tomato. Pakistan Journal of Botany, 45(5), 1551-1556.

Herrera Flores, T. S., Ortíz Cereceres, J., Delgado Alvarado, A., & Acosta Galleros, J. A. (2012). Crecimiento y contenido de prolina y carbohidratos de plántulas de frijol sometidas a estrés por sequía. Revista mexicana de ciencias agrícolas, 3(4), 713-725. DOI: https://doi.org/10.29312/remexca.v3i4.1425

Kumar, T., Uzma, Khan, M. R., Abbas, Z., & Ali, G. M. (2014). Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology, 56(3), 199-209. Disponible en: https://doi.org/10.1007/s12033-013-9695-z DOI: https://doi.org/10.1007/s12033-013-9695-z

Lau, C., Jarvis, A., & Ramírez Villegas, J. (2011). Agricultura Colombiana: adaptación al cambio climático. Disponible en: https://cgspace.cgiar.org/handle/10568/57475

Ma, Y., Wang, L., Wang, J., Zhong, Y., & Cheng, Z.-M. (Max). (2019). Isolation and expression analysis of Salt Overly Sensitive gene family in grapevine (Vitisvinifera) in response to salt and PEG stress. PLOS ONE, 14(3), e0212666. Disponible en: https://doi.org/10.1371/journal.pone.0212666 DOI: https://doi.org/10.1371/journal.pone.0212666

Manjarrés-Hernández, E. H., & Perea-Dallos, M. (2012). Establishment of a purple passion fruit (Passiflora edulis Sims.) propagation protocol from zygotic embryos and axillary shoots. Agronomía, 20(2), 53-64.

Marssaro, A. L., Morais-Lino, L. S., Cruz, J. L., Ledo, C. A. da S., Santos-Serejo, J. A. dos, Marssaro, A. L., et al. (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesquisa Agropecuária Brasileira, 52(12), 1301-1304. Disponible en: https://doi.org/10.1590/s0100-204x2017001200021 DOI: https://doi.org/10.1590/s0100-204x2017001200021

Medina Gonzalez, G. (2014). Organogénesis directa in vitro de Nicotiana tabacum -variedad criollo Havanensis- a partir de láminas foliares. Disponible en: https://bdigital.zamorano.edu/handle/11036/3498

Moreno-Bermúdez, L. J., Reyes, M., Rodríguez, M., Kosky, R. G., Roque, B., & Chong-Pérez, B. (2017). Respuesta de cultivares de Musa spp. al estrés hídrico in vitro inducido con polietilenglicol 6000. Revista Colombiana de Biotecnología, 19(2), 75-85. Disponible en: https://doi.org/10.15446/rev.colomb.biote.v19n2.60405 DOI: https://doi.org/10.15446/rev.colomb.biote.v19n2.60405

Munhoz, C. F., Costa, Z. P., Cauz-Santos, L. A., Reátegui, A. C. E., Rodde, N., Cauet, S., et al. (2018). A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 8(1), 13024. Disponible en: https://doi.org/10.1038/s41598-018-31330-8 DOI: https://doi.org/10.1038/s41598-018-31330-8

Murashige & Skoog, S. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures - Murashige - 1962 -. Disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Naser, L., Kourosh, V., Bahman, K., & Reza, A. (2010). Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination. Fruits, 65(2), 97-112. Disponible en: https://doi.org/10.1051/fruits/20010005 DOI: https://doi.org/10.1051/fruits/20010005

Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89-98. Disponible en: https://doi.org/10.1016/j.envexpbot.2010.10.021 DOI: https://doi.org/10.1016/j.envexpbot.2010.10.021

Sánchez Chiang, N., & Jiménez, V. M. (2008). Técnicas moleculares para la detección de variantes somaclonales. Agronomía Mesoamericana, 20(1), 135. Disponible en: https://doi.org/10.15517/am.v20i1.4989 DOI: https://doi.org/10.15517/am.v20i1.4989

Schaller, G. E., Bishopp, A., & Kieber, J. J. (2015). The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. The Plant Cell, 27(1), 44-63. Disponible en: https://doi.org/10.1105/tpc.114.133595 DOI: https://doi.org/10.1105/tpc.114.133595

Sistema de información sobre biodiversidad de Colombia. (2018). Sistema de información sobre biodiversidad de Colombia. Disponible en: https://ipt.biodiversidad.co/cr-sib/resource.do?r=2449_variacion_somaclonal_maracuya_20180502

Tsago, Y., Andargie, M., & Takele, A. (2014). In vitro selection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Science Today, 1(2), 62-68. Disponible en: https://doi.org/10.14719/pst.2014.1.2.14 DOI: https://doi.org/10.14719/pst.2014.1.2.14

Verma, D., Ansari, M. W., Agrawal, G. K., Rakwal, R., Shukla, A., & Tuteja, N. (2013). In vitro selection and field responses of somaclonal variant plants of rice cv PR113 for drought tolerance. Plant Signaling & Behavior, 8(4), e23519-e23519. Disponible en: https://doi.org/10.4161/psb.23519 DOI: https://doi.org/10.4161/psb.23519

Vijayakumari, K., & Puthur, J. T. (2016). γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regulation, 78(1), 57-67. Disponible en: https://doi.org/10.1007/s10725-015-0074-6 DOI: https://doi.org/10.1007/s10725-015-0074-6

How to Cite

APA

Loaiza Campiño, I. D., Mesa López, N. and Villegas Hiencapié, A. M. (2020). Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit. Revista Colombiana de Biotecnología, 22(2), 44–52. https://doi.org/10.15446/rev.colomb.biote.v22n2.79623

ACM

[1]
Loaiza Campiño, I.D., Mesa López, N. and Villegas Hiencapié, A.M. 2020. Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit. Revista Colombiana de Biotecnología. 22, 2 (Jul. 2020), 44–52. DOI:https://doi.org/10.15446/rev.colomb.biote.v22n2.79623.

ACS

(1)
Loaiza Campiño, I. D.; Mesa López, N.; Villegas Hiencapié, A. M. Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit. Rev. colomb. biotecnol. 2020, 22, 44-52.

ABNT

LOAIZA CAMPIÑO, I. D.; MESA LÓPEZ, N.; VILLEGAS HIENCAPIÉ, A. M. Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit. Revista Colombiana de Biotecnología, [S. l.], v. 22, n. 2, p. 44–52, 2020. DOI: 10.15446/rev.colomb.biote.v22n2.79623. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/79623. Acesso em: 6 aug. 2024.

Chicago

Loaiza Campiño, Ivan Dario, Neftalí Mesa López, and Andrés Mauricio Villegas Hiencapié. 2020. “Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit”. Revista Colombiana De Biotecnología 22 (2):44-52. https://doi.org/10.15446/rev.colomb.biote.v22n2.79623.

Harvard

Loaiza Campiño, I. D., Mesa López, N. and Villegas Hiencapié, A. M. (2020) “Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit”, Revista Colombiana de Biotecnología, 22(2), pp. 44–52. doi: 10.15446/rev.colomb.biote.v22n2.79623.

IEEE

[1]
I. D. Loaiza Campiño, N. Mesa López, and A. M. Villegas Hiencapié, “Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit”, Rev. colomb. biotecnol., vol. 22, no. 2, pp. 44–52, Jul. 2020.

MLA

Loaiza Campiño, I. D., N. Mesa López, and A. M. Villegas Hiencapié. “Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit”. Revista Colombiana de Biotecnología, vol. 22, no. 2, July 2020, pp. 44-52, doi:10.15446/rev.colomb.biote.v22n2.79623.

Turabian

Loaiza Campiño, Ivan Dario, Neftalí Mesa López, and Andrés Mauricio Villegas Hiencapié. “Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit”. Revista Colombiana de Biotecnología 22, no. 2 (July 1, 2020): 44–52. Accessed August 6, 2024. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/79623.

Vancouver

1.
Loaiza Campiño ID, Mesa López N, Villegas Hiencapié AM. Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit. Rev. colomb. biotecnol. [Internet]. 2020 Jul. 1 [cited 2024 Aug. 6];22(2):44-52. Available from: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/79623

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

533

Downloads

Download data is not yet available.