Bacillus cereus bacteria endófita promotora de crecimiento vegetal
Bacillus cereus endophytic bacterial plant growth promoter
Promotor de crescimento de plantas bacterianas endofíticas Bacillus cereus
DOI:
https://doi.org/10.15446/rev.colomb.biote.v22n2.81723Keywords:
antimicrobiano, densidad poblacional, Lippia origanoides, microorganismo, tejido vegetal. (es)antimicrobial, population density, Lippia origanoides, microorganism, Plant tissue. (en)
antimicrobiano, densidade populacional, Lippia origanoides, microorganismo, tecido vegetal (pt)
Downloads
La planta Lippia origanoides ha sido ampliamente estudiada debido al efecto antimicrobiano y antifúngico que poseen sus extractos y aceites esenciales, los cuales han sido probados contra un gran número de microorganismos patógenos. Sin embargo, es escasa la literatura que registra la diversidad de bacterias endófitas asociadas a esta especie de plantas. El objetivo del trabajo fue evaluar in vitro la capacidad de promoción de crecimiento vegetal de bacterias endófitas de Lippia origanoides en el municipio de Sincelejo-Sucre, Colombia. En este estudio se aislaron bacterias endófitas en medio de cultivo agar R2A a partir de diferentes tejidos, se evaluó la densidad poblacional (UFC/g de tejido) por conteo en superficie y la promoción de crecimiento vegetal de forma cualitativa en medios selectivos específicos. Se observaron diferencias significativas para la densidad poblacional de bacterias endófitas respecto al tipo de tejido, con mayores valores en la raíz (2,0 x 1010/g raíz), seguido del tallo (1,3 x 1010/g tallo) y hojas (9,2 x 109/g hoja). Se obtuvieron un total de 20 bacterias endófitas, los cuales dos mostraron capacidad solubilizadora de fosfato, fijación biológica de nitrógeno, producción de sideróforos y ACC desaminasa. Los morfotipos TLO5 y RLO4 fueron identificados molecularmente como Bacillus cereus, mostrando buenos resultados de promoción de crecimiento vegetal.
Lippia origanoides plants have been widely studied for their antimicrobial and antifungal effects of various extracts and essential oils against a large number of pathogenic microorganisms. However, to date there is little record of the diversity of endophytic bacteria associated with this plant species. The objective of the work was to evaluate in vitro the capacity to promote plant growth of endophytic bacteria of Lippia origanoides in the municipality of Sincelejo-Sucre, Colombia. In this study morphotypes were isolated and population density (CFU/ g of tissue) was determined; Qualitative plant growth tests were performed and molecularly identified. The results show that there were significant differences for population density of endophytic bacteria with respect to the type of tissue, with higher values at the root (2.0 x 1010 / g root), followed by the stem (1.3 x 1010 / g stem) and on the sheets (9.2 x 109 / g sheet). A total of 20 endophytic bacteria were isolated, showed phosphate solubilizing capacity, fixing nitrogen, siderophores production and ACC deaminase, corresponding to the TLO5 and RLO4 morphotypes such as Bacillus cereus endophytic bacteria associated with Lippia origanoides plants, which could become a possible resource biological to be used in the promotion of plant growth in these plants producing essential oils.
References
Albesiano, S., Rangel-Churio, J. O., Cadena, A. 2003. La vegetación del cañón del río Chicamocha (Santander, Colombia). Caldasia, 25(1): 73-99.
Alviz, L., Pérez, A., Pérez-Cordero, A. 2017. Efecto inhibitorio de compuestos tipo metabolitos de bacterias endófitas contra Colletotrichum gloeosporioides y Burkholderia glumae. Colombiana de Ciencia Animal-RECIA, 18-25. DOI: https://doi.org/10.24188/recia.v9.nS.2017.516
Andrade, L. F., de Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., Pereira, D. F. G. S. 2014. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology, 52(1): 27-34. DOI: https://doi.org/10.1007/s12275-014-3019-2
Ardon, O., Nudelman, R., Caris, C., Libman, J., Shanzer, A., Chen, Y., Hadar, Y. 1998. Iron uptake in Ustilago maydis: tracking the iron path. Journal of bacteriology, 180(8): 2021-2026. DOI: https://doi.org/10.1128/JB.180.8.2021-2026.1998
Arrieta, L., Chamorro, L., Montes, D. 2017. Actividad antimicrobiana de bacterias endófitas aisladas de orégano serrano (Lippia origanoides) contra Burkholderia glumae y Colletotrichum gloeosporioides. Revista Colombiana de Ciencia Animal-RECIA, 93-98. DOI: https://doi.org/10.24188/recia.v9.nS.2017.526
Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Dietz, K. J. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47(7): 642-652. DOI: https://doi.org/10.1139/w01-062
Chaudhary, H. J., Peng, G., Hu, M., He, Y., Yang, L., Luo, Y., Tan, Z. 2012. Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microbial ecology, 63(4): 813-821. DOI: https://doi.org/10.1007/s00248-011-9978-5
Dawe, D. (2000). The potential role of biological nitrogen fixation in meeting future demand for rice and fertilizer. The quest for nitrogen fixation in rice, 1-9.
Ding, T., Palmer, M. W., Melcher, U. 2013. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC microbiology, 13(1): 1. DOI: https://doi.org/10.1186/1471-2180-13-1
Dixon, R., Kahn, D. 2004. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8), 621. DOI: https://doi.org/10.1038/nrmicro954
Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C., Dixon, R.2012. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC genomics, 13(1): 162. DOI: https://doi.org/10.1186/1471-2164-13-162
El-Tarabily, K. A. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and Soil, 308(1-2): 161-174. DOI: https://doi.org/10.1007/s11104-008-9616-2
Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M. X., Barea, J. M. 2010. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45(3): 209-217. DOI: https://doi.org/10.1016/j.apsoil.2010.04.007
García, C. A., Passerini De Rossi, B., Alcaraz, E., Vay, C.,Franco, M. 2012. Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev Argent Microbiol, 44(3): 150-154.
Hennebelle, T., Sahpaz, S., Joseph, H., Bailleul, F. 2008. Ethnopharmacology of Lippia alba. Journal of ethnopharmacology, 116(2):211-222. DOI: https://doi.org/10.1016/j.jep.2007.11.044
Hunter, P. J., Hand, P., Pink, D., Whipps, J. M., & Bending, G. D. 2010. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl. Environ. Microbiol., 76(24): 8117-8125. DOI: https://doi.org/10.1128/AEM.01321-10
Kifle, M. H.,Laing, M. D. 2011. Determination of optimum dose and frequency of application of free-living diazotrophs (FLD) on lettuce. African Journal of Agricultural Research, 6(3): 671-675.
Lara, C. C., Oviedo, L., Alemán, A. 2011. Aislados nativos con potencial en la producción de ácido indol acético para mejorar la agricultura. Biotecnología en el Sector Agropecuario y Agroindustrial ,9(1): 17-23.
Luna Martínez, Laura, Martínez Peniche, Ramón A., Hernández Iturriaga, Montserrat, Arvizu Medrano, Sofía M., Pacheco Aguilar, Juan R. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista fitotecnia mexicana, 36(1): 63-69. DOI: https://doi.org/10.35196/rfm.2013.1.63
Mano, H., Morisaki, H. 2008. Endophytic bacteria in the rice plant. Microbes and environments, 23(2): 109-117. DOI: https://doi.org/10.1264/jsme2.23.109
Matos, A. D., Gomes, I. C., Nietsche, S., Xavier, A. A., Gomes, W. S., Dos Santos Neto, J. A., Pereira, M. C. 2017. Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais da Academia Brasileira de Ciências, 89(4), 2945-2954. DOI: https://doi.org/10.1590/0001-3765201720160111
Nair, D. N., Padmavathy, S. 2014. Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014: 11. DOI: https://doi.org/10.1155/2014/250693
Okunishi, S., Sako, K., Mano, H., Imamura, A., Morisaki, H. 2005. Bacterial flora of endophytes in the maturing seed of cultivated rice ( Oryza sativa ). Microbes Environ.20:168-177. DOI: https://doi.org/10.1264/jsme2.20.168
Oliveira, M. N., Santos, T. M., Vale, H. M., Delvaux, J. C., Cordero, A. P., Ferreira, A. B., ...Borges, A. C. 2013. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Canadian journal of microbiology, 59(4): 221-230. DOI: https://doi.org/10.1139/cjm-2012-0674
Pascual, M. E., Slowing, K., Carretero, E., Mata, D. S., Villar, A. 2001. Lippia: traditional uses, chemistry and pharmacology: a review. Journal of ethnopharmacology, 76(3): 201-214. DOI: https://doi.org/10.1016/S0378-8741(01)00234-3
Pérez, A., Rojas, J., Fuentes, J. 2010. Diversidad de bacterias endófitas asociadas a raíces del pasto colosuana (Bothriochloa pertusa) en tres localidades del departamento de Sucre, Colombia. Acta biológica Colombiana, 15(2): 219 – 228. DOI: https://doi.org/10.24188/recia.v2.n1.2010.331
Pérez-Cordero, A., Tuberquia-Sierra, A., Amell-Jímenez, D. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Agronomía Mesoamericana, 213-223. DOI: https://doi.org/10.15517/am.v25i2.15425
Radzki, W., Mañero, F. G., Algar, E., García, J. L., García-Villaraco, A., Solano, B. R. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104(3): 321-330. DOI: https://doi.org/10.1007/s10482-013-9954-9
Ribeiro, A. F., Andrade, E. H. A., Salimena, F. R. G., Maia, J. G. S. 2014. Circadian and seasonal study of the cinnamate chemotype from Lippia origanoides Kunth. Biochemical Systematics and Ecology, 55: 249-259. DOI: https://doi.org/10.1016/j.bse.2014.03.014
Rubio, L. M., Ludden, P. W. 2005. Maturation of nitrogenase: a biochemical puzzle. Journal of Bacteriology, 187(2): 405-414. DOI: https://doi.org/10.1128/JB.187.2.405-414.2005
Ruiz, C., Tunarosa, F., Martínez, J., Stashenko, E. 2007. Estudio comparativo por GC-MS de metabolitos secundarios volátiles de dos quimiotipos de Lippia origanoides HBK, obtenidos por diferentes técnicas de extracción. Scientia et technica, 1(33).
Schwyn, B., Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1): 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., Wang-Pruski, G. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 55(3):1187-1192. DOI: https://doi.org/10.1099/ijs.0.63149-0
Stashenko, E., Ruiz, C., Muñoz, A., Castañeda, M., Martínez, J. 2008. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Natural Product Communications, 3(4): 1934578X0800300417. DOI: https://doi.org/10.1177/1934578X0800300417
Sun Y., Cheng, Z., Glick, B. R. 2009. The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS microbiology letters, 296(1):131-136. DOI: https://doi.org/10.1111/j.1574-6968.2009.01625.x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Revista Colombiana de Biotecnología
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in the journal are welcome to code Creative Commons 4.0 Attribution, non-commercial, no derivatives. That is, that even as the Colombian Journal of Biotechnology of free access, users can download the information contained in it, but should give attribution or recognition of intellectual property, should use it as is, without derivation and should not be used with commercial purposes. Creative Commons This work is under a Creative Commons Attribution 4.0 License International. You are free: Share - copy and redistribute the material in any media or format Adapt - remix, transform and create from the material for any purpose, including commercial. The licensor can not revoke these freedoms while complying with the terms of the license. Under the following conditions: Attribution - You must properly acknowledge authorship, provide a link to the license and indicate whether changes have been made <. You can do this in any reasonable manner, but not in a way that suggests that support the licensor or receives for his use. No additional restrictions - You can not apply legal terms or technological measures that legally restrict realize what the license allows. notices: You do not have to comply with the license for those elements of the material in the public domain or where their use is permitted by the application of an exception or a limit. No guarantees are given. The license can not provide all the necessary permits for the intended use. For example, other rights such as advertising, privacy, or moral rights may limit the use of the material.