Publicado

2020-12-01

Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina

Biochemical passive reactors: a biotechnological alternative to remediation of acid mine drainage

DOI:

https://doi.org/10.15446/rev.colomb.biote.v22n2.74090

Palabras clave:

mezcla reactiva, comunidades microbianas, pruebas piloto, sulfato reducción, precipitación de metales. (es)
reactive mixture, microbial communities, pilot tests, sulfate reduction, metal precipitation. (en)

Descargas

Autores/as

El Drenaje ácido de mina (DAM) es actualmente el principal contaminante de las regiones mineras. Los reactores bioquímicos pasivos son una tecnología sostenible fácil de instalar que utiliza desechos agroindustriales de la región y puede operar en áreas remotas con poco mantenimiento. Además, son una tecnología limpia que involucra bioprocesos, reacciones químicas y precipitación de metales minimizando el impacto de los vertimientos ácidos sobre suelos y cuerpos de aguas. Los reactores bioquímicos pasivos son columnas empacadas con una “mezcla reactiva” conformada por materiales orgánicos, inorgánicos y un inoculo microbiano. En esta mezcla se remedia el DAM por medio de procesos fisicoquímicos como la adsorción, precipitación, coprecipitación de los metales y de la reducción del sulfato a sulfuro, mientras se incrementa el pH y la alcalinidad. Con el fin de brindar información reciente, así como las necesidades de investigación en el tema este documento presenta una revisión de literatura sobre la generación química y biológica de los DAM, así como su remedición utilizando reactores bioquímicos pasivos. El conocimiento de los conceptos básicos de estos procesos es extremadamente útil para evaluar las posibles aplicaciones, beneficios y limitaciones de estos sistemas de tratamiento utilizados por la biotecnología durante la biorremediación de efluentes mineros.

Acid Mine Drainage (AMD) is currently the main pollutant in mining areas. Passive biochemical reactors are a sustainable technology easy to install using agro-industry waste from the mining region and operating in remote locations. Besides, bioreactors are clean technology that involves bioprocesses, chemical reactions and metal precipitation, minimizing the impact of AMD on soils and fresh water sources. The passive biochemical reactors are columns packed with a "reactive mixture" consisting of organic, inorganic materials and a microbial inoculum. In this reactive mixture, AMD is remediated through physicochemical processes such as metals adsorption, precipitation and co-precipitation, as well as, the reduction of sulfate to sulfur, while pH and alkalinity are increased. In order to provide recent information and research needs in the subject, this document presents a review of the literature about the chemical and biological generation of AMD and its remediation using passive biochemical reactors. The knowledge of the basic concepts of these processes is extremely useful to evaluate the possible applications, benefits and limitations of these treatment systems used by biotechnology during the bioremediation of mining effluents.

Referencias

Adams, B., Anderson, R., Bless, D., Butler, B., Conway, B., Dailey, A., y Zownir, A. (2014). Reference guide to Treatment Technologies for mining-influenced water.

Amos, P., y Younger, P. (2003). Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate. Water Research, 37, 108–120. DOI: https://doi.org/10.1016/S0043-1354(02)00159-8

Aoyagi, T., Hamai, T., Hori, T., Sato, Y., Kobayashi, M., Sato, Y y Sakata, T. (2017). Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. AMB Express, 7(1), 142. DOI: https://doi.org/10.1186/s13568-017-0440-z

Ayora, C., Macías, F., Torres, E., Lozano, A., Carrero, S., Nieto, J.M., y Castillo-Michel, H. (2016). Recovery of rare earth elements and yttrium from passive-remediation systems of acid mine drainage. Environmental science y technology, 50(15), 8255-8262. DOI: https://doi.org/10.1021/acs.est.6b02084

Ayora, C., Macías, F., Torres, E., y Nieto, J.M. (2015). Rare Earth Elements in Acid Mine Drainage. XXXV Reunión de La Sociedad Española de Mineralogía, 2016(S3), 1–22.

Baldwin, S.A., Khoshnoodi, M., Rezadehbashi, M., Taupp, M., Hallam, S., Mattes, A., y Sanei, H. (2015). The Microbial Community of a Passive Biochemical Reactor Treating Arsenic, Zinc, and Sulfate-Rich Seepage. Frontiers in Bioengineering and Biotechnology, 1–13. https://doi.org/10.3389/fbioe.2015.00027 DOI: https://doi.org/10.3389/fbioe.2015.00027

Baldwin, S.A., Mattes, A., Rezadehbashi, M., y Taylor, J. (2016). Seasonal Microbial Population Shifts in a Bioremediation System Treating Metal and Sulfate-Rich Seepage. Minerals, 6(2), 36. https://doi.org/10.3390/min6020036 DOI: https://doi.org/10.3390/min6020036

Biermann, V., Lillicrap, A.M., Magana, C., Price, B., Bell, R.W., y Oldham, C.E. (2014). Applicability of passive compost bioreactors for treatment of extremely acidic and saline waters in semi-arid climates. Water Research, 55, 83–94. https://doi.org/10.1016/j.watres.2014.02.019 DOI: https://doi.org/10.1016/j.watres.2014.02.019

Bolis, J. L., Wildeman, T.R., y Dawson, H.E. (1992). Hydraulic conductivity of substrates used for passive acid mine drainage treatment. In National Meeting of the American Society for Surface Mining and Reclamation, Duluth, Minnesota (pp. 14-18). DOI: https://doi.org/10.21000/JASMR92010079

Chen, L.X., Hu, M., Huang, L.N., Hua, Z.S., Kuang, J.L., Li, S.J., y Shu, W.S. (2014). Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. The ISME Journal, 9(7), 1579–1592. https://doi.org/10.1038/ismej.2014.245 DOI: https://doi.org/10.1038/ismej.2014.245

Cheong, Y., Min, J., y Kwon, K. (1998). Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. Journal of Geochemical Exploration, 64, 147–152. DOI: https://doi.org/10.1016/S0375-6742(98)00028-4

Cook, K.L., Whitehead, T.R., Spence, C., y Cotta, M. A. (2008). Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Anaerobe, 14(3), 172–180. DOI: https://doi.org/10.1016/j.anaerobe.2008.03.003

Costello, C. (2003). Acid Mine Drainage: Innovative Treatment Technologies Prepared by Technology Innovation Office (No. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office).

Doshi, S.M. (2006). Bioremediation of acid mine drainage using sulfate-reducing bacteria. US Environmental Protection Agency, Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation, 65.

Drennan, D.M., Almstrand, R., Lee, I., Landkamer, L., Figueroa, L., y Sharp, J.O. (2016). Organoheterotrophic Bacterial Abundance Associates with Zinc Removal in Lignocellulose-Based Sulfate-Reducing Systems. Environmental Science and Technology, 50(1), 378–387. https://doi.org/10.1021/acs.est.5b04268 DOI: https://doi.org/10.1021/acs.est.5b04268

Dvorak, D.H., Hedin, R.S., Edenborn, H.M., y McIntire, P.E. (1992). Treatment of metal‐contaminated water using bacterial sulfate reduction: Results from pilot‐scale reactors. Biotechnology and bioengineering, 40(5), 609-616. DOI: https://doi.org/10.1002/bit.260400508

García-Moyano, A., Austnes, A., Lanzén, A., González-Toril, E., Aguilera, Á., y Øvreås, L. (2015). Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches. Microorganisms, 3(4), 667–694. DOI: https://doi.org/10.3390/microorganisms3040667

Gibert, O., Cortina, J.L., de Pablo, J., y Ayora, C. (2013). Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environmental Science and Pollution Research, 20(11), 7854–7862. DOI: https://doi.org/10.1007/s11356-013-1507-2

Gibert, O., De Pablo, J., Cortina, J., y Ayora, C. (2004). Chemical characterization of natural organic substrates for biological mitigation of acid mine drainage. Water Research, 38(19), 4186–4196 DOI: https://doi.org/10.1016/j.watres.2004.06.023

Gusek, J. J. (2002). Sulfate-reducing bioreactor design and operating issues: is this the passive treatment technology for your mine drainage. National Association of Abandoned Mine Land Programs, Park City, Utah.

Haakensen, M., Pittet, V., Spacil, M. M., Castle, J. W., y Rodgers, J. H. (2015). Key Aspects for Successful Design and Implementation of Passive Water Treatment Systems. Journal of Environmental Solutions for Oil, Gas, and Mining, 1(1), 59–81. https://doi.org/10.3992/1573-2377-374X-1.1.59 DOI: https://doi.org/10.3992/1573-2377-374X-1.1.59

Hallberg, K.B. (2010). New perspectives in acid mine drainage microbiology. Hydrometallurgy, 104(3–4), 448–453. DOI: https://doi.org/10.1016/j.hydromet.2009.12.013

Hao, O.J. (2003). Sulphate-reducing bacteria. The Handbook of Water and Wastewater Microbiology. Academic Press, London, 459-469. DOI: https://doi.org/10.1016/B978-012470100-7/50029-7

Hao, T.W., Xiang, P.Y., Mackey, H.R., Chi, K., Lu, H., Chui, H.K., Chen, G.H. (2014). A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1–21. https://doi.org/10.1016/j.watres.2014.06.043 DOI: https://doi.org/10.1016/j.watres.2014.06.043

Hedin RS, Nairn RW, K.R. (1994). Passive treatment of coal mine drainage. US Bureau of Mines IC 9389, Pittsburgh. Pittsburgh.

Hiibel, S.R., Pereyra, L.P., Breazeal, M.V.R., Reisman, D. J., Reardon, K.F., y Pruden, A. (2011). Effect of Organic Substrate on the Microbial Community Structure in Pilot-Scale Sulfate-Reducing Biochemical Reactors Treating Mine Drainage. Environmental Engineering Science, 28(8), 563–572. https://doi.org/10.1089/ees.2010.0237 DOI: https://doi.org/10.1089/ees.2010.0237

Hiibel, S.R., Pereyra, L.P., Inman, L.Y., Tischer, A., Reisman, D.J., Reardon, K. F., y Pruden, A. (2008). Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environmental Microbiology, 10(8), 2087–97. https://doi.org/10.1111/j.1462-2920.2008.01630.x DOI: https://doi.org/10.1111/j.1462-2920.2008.01630.x

Huntsman BE, Solch J.G, Porter M.O (1978). Utilization of Sphagnum species dominated bog for coal acid mine drainage abatement. Abstracts, 91st annual meeting. Geological Society of America, Toronto, ON, Canada, p 322

Izquierdo, J.A., Sizova, M.V. y Lynd, L.R. (2010). Diversity of Bacteria and Glycosyl Hydrolase Family 48 Genes in Cellulolytic Consortia Enriched from Thermophilic Biocompost. Applied and Environmental Microbiology 76(11), 3545–3553 DOI: https://doi.org/10.1128/AEM.02689-09

INAP, International Network for Acid Prevention (2019). Global acid rock drainage guide. Consultado 4 abril 2018 en http://www.gardguide.com

ITRC, Interstate Technology & Regulatory Council, (2011). Biochemical Reactors for Mining-Influenced Water. Washington, D.C.: Interstate Technology & Regulatory Council, PRB: Consultado 4 abril 2018 in http://www.itrcweb.org

Johnson, D., y Hallberg, K. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1–2), 3–14. DOI: https://doi.org/10.1016/j.scitotenv.2004.09.002

Kaksonen, A.H., y Puhakka, J.A. (2007). Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals. Engineering in Life Sciences, 7(6), 541–564. https://doi.org/10.1002/elsc.200720216 DOI: https://doi.org/10.1002/elsc.200720216

Laothanachareon, T., Kanchanasuta, S., Mhuanthong, W., Phalakornkule, C., Pisutpaisal, N., y Champreda, V. (2014). Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Journal of Environmental Management, 144, 143–151. https://doi.org/10.1016/j.jenvman.2014.05.019 DOI: https://doi.org/10.1016/j.jenvman.2014.05.019

Lefticariu, L., Walters, E.R., Pugh, C.W., y Bender, K.S. (2015). Sulfate reducing bioreactor dependence on organic substrates for remediation of coal-generated acid mine drainage: Field experiments. Applied Geochemistry, 63, 70–82. https://doi.org/10.1016/j.apgeochem.2015.08.002 DOI: https://doi.org/10.1016/j.apgeochem.2015.08.002

Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., y Giuliano, V. (2010). Application of physical-chemical and biological-chemical methods for heavy metals removal from acid mine drainage. Journal of Biotechnology, 150 (Supplement 1), 252–253. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168165610010400 DOI: https://doi.org/10.1016/j.jbiotec.2010.09.133

Méndez-García, C., Peláez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V., y Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6(MAY), 1–17. https://doi.org/10.3389/fmicb.2015.00475 DOI: https://doi.org/10.3389/fmicb.2015.00475

Meyer, J. (2007). [FeFe] hydrogenases and their evolution: a genomic perspective. Cellular and Molecular Life Sciences 64, 1063 – 1084. DOI: https://doi.org/10.1007/s00018-007-6477-4

Mirjafari, P., y Baldwin, S. (2016). Decline in Performance of Biochemical Reactors for Sulphate Removal from Mine-Influenced Water is accompanied by Changes in Organic Matter Characteristics and Microbial Population Composition. Water, 8(4), 124. https://doi.org/10.3390/w8040124 DOI: https://doi.org/10.3390/w8040124

Moreau, J., Zierenberg, R., y Banfield, J. (2010). Diversity of Dissimilatory Sulfite Reductase Genes (dsrAB) in a Salt Marsh Impacted by Long-Term Acid Mine Drainage. Applied and Environmental Microbiology, 76(14), 4819–4828. DOI: https://doi.org/10.1128/AEM.03006-09

Muyzer, G., y Stams, A. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews, 6, 441–457. DOI: https://doi.org/10.1038/nrmicro1892

Nagpal, S., Chuichulcherm, S., Livingston, A. y Peeva, L. (2000). Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study. Biotechnology and Bioengineering 70, 533–543 DOI: https://doi.org/10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C

Ňancucheo, I., y Barrie Johnson, D. (2014). Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2014.04.025. DOI: https://doi.org/10.1016/j.hydromet.2014.04.025

Neculita, C. Zagury, B. (2007). Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Journal of Environmental Quality, 36(1), 1–16. https://doi.org/10.2134/jeq2006.0066 DOI: https://doi.org/10.2134/jeq2006.0066

Neculita, C., Yim, G.J., Lee, G., Ji, S.W., Jung, J.W., Park, H.S., y Song, H. (2011). Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors. Chemosphere, 83(1), 76–82. https://doi.org/10.1016/j.chemosphere.2010.11.082 DOI: https://doi.org/10.1016/j.chemosphere.2010.11.082

Newman, D.K., y Banfield, J.F. (2002). Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science (New York, N.Y.), 296(5570), 1071–7. https://doi.org/10.1126/science.1010716 DOI: https://doi.org/10.1126/science.1010716

Nordstrom, D.K. (2011). Mine waters: Acidic to circumneutral. Elements, 7(6), 393–398. https://doi.org/10.2113/gselements.7.6.393 DOI: https://doi.org/10.2113/gselements.7.6.393

Nordstrom, D.K., Blowes, D. W., y Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry. Elsevier Ltd. https://doi.org/10.1016/j.apgeochem.2015.02.008 DOI: https://doi.org/10.1016/j.apgeochem.2015.02.008

Pereyra, L.P., Hiibel, S.R., Perrault, E.M., Reardon, K.F., y Pruden, A. (2012). Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling. FEMS Microbiology Ecology, 82(1), 135–47. https://doi.org/10.1111/j.1574-6941.2012.01412.x DOI: https://doi.org/10.1111/j.1574-6941.2012.01412.x

Pereyra, L.P., Hiibel, S.R., Prieto Riquelme, M.V, Reardon, K.F., y Pruden, A. (2010). Detection and quantification of functional genes of cellulose- degrading, fermentative, and sulfate-reducing bacteria and methanogenic archaea. Applied and Environmental Microbiology, 76(7), 2192–202. https://doi.org/10.1128/AEM.01285-09 DOI: https://doi.org/10.1128/AEM.01285-09

Pereyra, L.P., Hiibel, S.R., Pruden, A., y Reardon, K. F. (2008). Comparison of microbial community composition and activity in sulfate-reducing batch systems remediating mine drainage. Biotechnology and Bioengineering, 101(4), 702–13. https://doi.org/10.1002/bit.21930 DOI: https://doi.org/10.1002/bit.21930

Postgate, J. R., (1984). The sulphate-reducing bacteria. Cambridge University Press, Cambridge, UK.

Pruden, A., Messner, N., Pereyra, L., Hanson, R. E., Hiibel, S. R., y Reardon, K. F. (2007). The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Water Research, 41(4), 904–14. https://doi.org/10.1016/j.watres.2006.11.025 DOI: https://doi.org/10.1016/j.watres.2006.11.025

Rabus, R., Hansen, T.A., y Widdel, F. (2006). Dissimilatory Sulfate and Sulfur-Reducing Prokaryotes. In F. T. Edward F. DeLong, Stephen Lory, Erko Stackebrandt, Eugene Rosenberg (Ed.), The Prokaryotes (fourth, pp. 659–768). Berlin: Springer Verlag. DOI: https://doi.org/10.1007/0-387-30742-7_22

Rodríguez, Y., Ballester, A., Blazquez, M., Gonzalez, F., y Muñoz, J. (2003). New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71(1–2), 37–46. DOI: https://doi.org/10.1016/S0304-386X(03)00172-5

Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F. M., y Stams, A. J. M. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 269(3), 98–109. https://doi.org/10.1016/j.jhazmat.2013.12.032 DOI: https://doi.org/10.1016/j.jhazmat.2013.12.032

Schmidtova, J., y Baldwin, S. (2011). Correlation of bacterial communities supported by different organic materials with sulfate reduction in metal-rich landfill leachate. Water Research, 45(3), 1115–1128. DOI: https://doi.org/10.1016/j.watres.2010.10.038

Seyler, J., Figueroa, L., y Ahmann, D. (2003). Effect of solid phase organic substrate characteristics on sulfate reducer activity and metal removal in passive mine drainage treatment systems. In Proceedings of National (pp. 1112–1130). DOI: https://doi.org/10.21000/JASMR03011112

Skousen, J., Zipper, C. E., Rose, A., y Ziemkiewicz, P. F. (2016). Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water and the Environment. https://doi.org/10.1007/s10230-016-0417-1 DOI: https://doi.org/10.1007/s10230-016-0417-1

Song, H., Yim, G.J., Ji, S.W., Neculita, C. M., y Hwang, T. (2012a). Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. Journal of Environmental Management, 111, 150–8. https://doi.org/10.1016/j.jenvman.2012.06.043 DOI: https://doi.org/10.1016/j.jenvman.2012.06.043

Song, H., Yim, G.J., Ji, S.W., Nam, I.H., Neculita, C.M., y Lee, G. (2012b). Performance of mixed organic substrates during treatment of acidic and moderate mine drainage in column bioreactors. Journal of Environmental Engineering, 138(10), 1077-1084. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0000567

Spence, C., Whitehead, T.R., y Cotta, M.A. (2008). Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure. Journal of Applied Microbiology, 105(6), 2143–2152. DOI: https://doi.org/10.1111/j.1365-2672.2008.03900.x

Tuttle, J.H., Dugan, P.R., & Randles, C.I. (1969). Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Applied Microbiology, 17(2), 297-302. DOI: https://doi.org/10.1128/AM.17.2.297-302.1969

Utgikar, V., y Harmon, S. (2002). Inhibition of sulfate‐reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environmental, 40–48. https://doi.org/10.1002/tox.10031 DOI: https://doi.org/10.1002/tox.10031

Vardar-Schara, G., Maeda, T. y Wood, T.K. (2008). Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology 1(2), 107–125. DOI: https://doi.org/10.1111/j.1751-7915.2007.00009.x

Vasquez, Y., Escobar, M.C., Neculita, C. M., Arbeli, Z., y Roldan, F. (2016). Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Chemosphere, 153. https://doi.org/10.1016/j.chemosphere.2016.03.052 DOI: https://doi.org/10.1016/j.chemosphere.2016.03.052

Vasquez, Y., Escobar, M.C., Saenz, J. S., Quiceno-Vallejo, M. F., Neculita, C. M., Arbeli, Z., y Roldan, F. (2018). Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage. Bioresource Technology, 247. https://doi.org/10.1016/j.biortech.2017.09.144 DOI: https://doi.org/10.1016/j.biortech.2017.09.144

Xu, R., Yang, Z.H., Zheng, Y., Liu, J.B., Xiong, W.P., Zhang, Y.R., Fan, C.Z. (2018). Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresource Technology, 262, 184–193. https://doi.org/10.1016/j.biortech.2018.04.083 DOI: https://doi.org/10.1016/j.biortech.2018.04.083

Yim, G., Ji, S., Cheong, Y., Neculita, C.M., y Song, H. (2014). The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment. Environmental Earth Sciences. https://doi.org/10.1007/s12665-014-3757-9 DOI: https://doi.org/10.1007/s12665-014-3757-9

Zagury, G., Neculita, C.M., y Bussiere, B. (2007). Passive treatment of acid mine drainage in bioreactors: short review, applications, and research needs. Ottawa Geo2007, 1439–1446.

Cómo citar

APA

Vasquez, O. Y. y Escobar, M. C. (2020). Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina. Revista Colombiana de Biotecnología, 22(2), 53–69. https://doi.org/10.15446/rev.colomb.biote.v22n2.74090

ACM

[1]
Vasquez, O.Y. y Escobar, M.C. 2020. Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina. Revista Colombiana de Biotecnología. 22, 2 (jul. 2020), 53–69. DOI:https://doi.org/10.15446/rev.colomb.biote.v22n2.74090.

ACS

(1)
Vasquez, O. Y.; Escobar, M. C. Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina. Rev. colomb. biotecnol. 2020, 22, 53-69.

ABNT

VASQUEZ, O. Y.; ESCOBAR, M. C. Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina. Revista Colombiana de Biotecnología, [S. l.], v. 22, n. 2, p. 53–69, 2020. DOI: 10.15446/rev.colomb.biote.v22n2.74090. Disponível em: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/74090. Acesso em: 22 ene. 2025.

Chicago

Vasquez, Olga Yaneth, y Maria Camila Escobar. 2020. «Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina». Revista Colombiana De Biotecnología 22 (2):53-69. https://doi.org/10.15446/rev.colomb.biote.v22n2.74090.

Harvard

Vasquez, O. Y. y Escobar, M. C. (2020) «Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina», Revista Colombiana de Biotecnología, 22(2), pp. 53–69. doi: 10.15446/rev.colomb.biote.v22n2.74090.

IEEE

[1]
O. Y. Vasquez y M. C. Escobar, «Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina», Rev. colomb. biotecnol., vol. 22, n.º 2, pp. 53–69, jul. 2020.

MLA

Vasquez, O. Y., y M. C. Escobar. «Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina». Revista Colombiana de Biotecnología, vol. 22, n.º 2, julio de 2020, pp. 53-69, doi:10.15446/rev.colomb.biote.v22n2.74090.

Turabian

Vasquez, Olga Yaneth, y Maria Camila Escobar. «Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina». Revista Colombiana de Biotecnología 22, no. 2 (julio 1, 2020): 53–69. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/74090.

Vancouver

1.
Vasquez OY, Escobar MC. Reactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina. Rev. colomb. biotecnol. [Internet]. 1 de julio de 2020 [citado 22 de enero de 2025];22(2):53-69. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/74090

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

962

Descargas

Los datos de descargas todavía no están disponibles.