Location of the sampling stations at the Macapule Lagoon (Station 1: northern mouth, 25.37° N, 108.74° W, Station 2: El Tortugón estuary, 25.39° N, 108.67° W) and Finca Doña Luisa shrimp farm (closed circle).

Publicado

2024-02-16

Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California

Detección del virus del síndrome de la mancha blanca en un ecosistema costero y una granja de camarón en el Golfo de California

DOI:

https://doi.org/10.15446/dyna.v91n231.110250

Palabras clave:

WSSV; seston size-fractions; nested PCR; real-time PCR; Macapule lagoon (en)
WSSV; fracciones por tamaño de seston; PCR anidada; PCR en tiempo real; Laguna de Macapule. (es)

Descargas

Autores/as

Three molecular assays were used to detect and quantify white spot syndrome virus (WSSV) in DNA extracted from seston size-fractioned (0.02, 0.2, 1.2, and 20 μm) samples collected from a coastal lagoon and an adjacent shrimp farm. From 107 DNA extracts, only two from one sample tested positive for WSSV with nested PCR in the 1.2 and 20 μm fractions. These results were confirmed by a semi-quantitative (IQ2000TM WSSV Detection and Prevention System) and a quantitative (IQREALTM WSSV Quantitative System) detection system based, based, respectively, on nested PCR and real-time PCR. A first viral load reference value (6.54 × 104 WSSV copies/mL) was established in a seston size fraction (1.2−20 μm). The results suggest that WSSV could be associated with both resuspension of fine clays and silts, and nanoplankton and organic colloids during infectious events.

Con el fin de detectar y cuantificar el virus del síndrome de las manchas blancas (WSSV) en extractos de ADN de muestras de seston fraccionadas por tamaño (0.02, 0.2, 1.2 y 20 μm) de una laguna costera y una granja camaronícola contigua se emplearon tres ensayos moleculares. De 107 extractos de ADN, solo dos de una muestra resultaron con detección positiva al WSSV con PCR anidada en las fracciones de 1.2 y 20 μm. Estos resultados fueron confirmados por un sistema de detección semicuantitativo (IQ2000TM WSSV) y uno cuantitativo (IQREALTM WSSV) basados, respectivamente, en PCR anidada y en PCR en tiempo real. Se estableció un primer valor de referencia de carga viral (6.54×104 copias WSSV/mL) en una fracción de tamaño de seston (1.2‒20μm). Los resultados sugieren que, durante eventos infecciosos, el WSSV podría estar asociado tanto a la resuspensión de arcillas y limos finos, como a nanoplancton y coloides orgánicos.

Referencias

Sánchez-Paz, A., White spot syndrome virus: an overview on an emergent concern. Veterinary Research, 41(6), art. 43, 2010. DOI: https://doi.org/10.1051/vetres/2010015 DOI: https://doi.org/10.1051/vetres/2010015

Lightner, D.V., Redman, R.M., Poulos, B.T., Nunan, L.M., Mari, J.L., and Hasson K.W., Risk of spread of penaeid shrimp viruses in the Americas by the International movement of live shrimp for aquaculture and frozen shrimp for commodity markets. Revue Scientifique et Technique, 16, pp. 146-160, 1997. DOI: https://doi.org/10.20506/rst.16.1.1010 DOI: https://doi.org/10.20506/rst.16.1.1010

Lightner, D.V., The penaeid shrimp viruses TSV, IHHNV, WSSV, and YHV. Journal of Applied Aquaculture, 9(2), pp. 27-52, 1999. DOI: https://doi.org/10.1300/J028v09n02_03 DOI: https://doi.org/10.1300/J028v09n02_03

WOAH (World Organization for Animal Health). White Spot Disease. World Organization for Animal Health, Chapter 2.2.8, Manual of Diagnostic Tests for Aquatic Animals, [online]. [consulted: February 16th of 2023], Paris, France, 2022. Available at: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/aquatic-manual-online-access/

Zhang, J.S., Li, Z.J., Wen, G.L., Wang, Y.L., Luo, L., Zhang H.J., and Dong, H.B., Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm. Iranian Journal of Veterinary Research, 17(3), pp. 210-214, 2016.

Esparza-Leal, H.M., Escobedo-Bonilla, C.M., Casillas-Hernández, R., Álvarez-Ruíz, P., Portillo-Clark, G., Valerio-García, R.C., Hernández-López, J., Méndez-Lozano, J., Vibanco-Pérez, N., and Magallón-Barajas, F.J., Detection of white spot syndrome virus in filtered shrimp-farm water fractions and experimental evaluation of its infectivity in Penaeus (Litopenaeus) vannamei. Aquaculture, 292(1-2), pp. 16-22, 2009. DOI: https://doi.org/10.1016/j.aquaculture.2009.03.021 DOI: https://doi.org/10.1016/j.aquaculture.2009.03.021

Chakraborty, A., Otta, S.K., Joseph, B., Kumar S., Hossain, M.S., Karunasagar, I., Venugopal, M.N., and Karunasagar, I., Prevalence of white spot syndrome virus in wild crustaceans along the coast of India. Current Science, 82(11), pp. 1392-1397, [online]. 2002. Available at: https://www.jstor.org/stable/24106017

Zhang, J.S., Dong, S.L., Dong, Y.W., Tian, X.L., Cao, Y.C., Li, Z.J., and Yan, D.C., Assessment of the role of brine shrimp Artemia in white spot syndrome virus (WSSV) transmission. Veterinary Research Communications, 34(1), pp. 25-32, 2010. DOI: https://doi.org/10.1007/s11259-009-9329-x DOI: https://doi.org/10.1007/s11259-009-9329-x

Marques, J.S., Müller, I.C., Moser, J.R., Sincero, T.C., and Marques, M.R.F., Wild captured crab, Chasmagnathus granulata (Dana, 1851), a new host for white spot syndrome virus (WSSV). Aquaculture, 318(1–2), pp. 20-24, 2011. DOI: https://doi.org/10.1016/j.aquaculture.2011.04.031 DOI: https://doi.org/10.1016/j.aquaculture.2011.04.031

Vázquez-Sauceda, M.L., Sánchez-Martínez J.G., Pérez-Castañeda R., Rábago-Castro J.L., Aguirre-Guzmán G., and Vargas-Cruz, D.Y., White Spot Syndrome Virus (WSSV) and Necrotizing Hepatopancreatitis (NHP) detection in wild shrimp of the San Andrés Lagoon, Mexico. Revista de Biología Marina y Oceanografía, 51(2), pp. 455-459, 2016. DOI: https://doi.org/10.4067/S0718-19572016000200023 DOI: https://doi.org/10.4067/S0718-19572016000200023

Jiang, G., Can white spot syndrome virus be transmitted through the phytoplankton - rotifer - artemia - shrimp pathway? African Journal of Biotechnology, 11(5), pp. 1277-1282, 2012. DOI: https://doi.org/10.5897/AJB10.2601 DOI: https://doi.org/10.5897/AJB10.2601

Mendoza-Cano, F., Sánchez-Paz, A., Terán-Díaz, B., Galván-Álvarez, D., Encinas-García, T., Enríquez-Espinoza, T., and Hernández-López, J., The endemic copepod Calanus pacificus californicus as a potential vector of White Spot Syndrome Virus. Journal of Aquatic Animal Health, 26(2), pp. 113-117, 2014. DOI: https://doi.org/10.1080/08997659.2013.852635 DOI: https://doi.org/10.1080/08997659.2013.852635

AERI (Alianza Estratégica y Red de Innovación de la Industria Acuícola). Informe final del proyecto: programa integral de sanidad acuícola en camarón fase II (clave: aeris-2007-87684), México. CIBNOR. 2010, 74 P.

Magallón-Barajas, F., Pérez-Enríquez, R., Aguiar, L., et al. Plan de manejo de los factores de riesgo sanitario de la enfermedad de la mancha blanca, en: 3er Foro iberoamericano de los recursos marinos y la acuicultura, 2010, Sonora, México. Conferencias FIRMA-FIACUI-FITEC, Hermosillo, Sonora, México, Fondo Editorial Fundación Sonora, Asociación Cultural del Foro de los Recursos Marinos y la Acuicultura de la Rías Gallegas, Hermosillo, México, 2011, pp. 243-265.

CESASIN (Comité Estatal de Sanidad Acuícola de Sinaloa, A.C.). Estadísticas 2019-2020: Programa de Sanidad en Crustáceos, México, [on line]. 2020. Available at: https://cesasin.mx/programacrustaceos/#estatsanit

Shi, T., Reeves, R.H., Gilichinsky, D.A., and Friedmann, E.I., Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecology, 33, pp. 169-179, 1997. DOI: https://doi.org/10.1007/s002489900019 DOI: https://doi.org/10.1007/s002489900019

Kimura, T., Yamano, K., Nakano, H., Momoyama, K., Hiraoka, M., and Inouye, K., Detection of penaeid rod-shaped DNA virus (PRDV) by PCR. Fish Pathology, 31(2), pp. 93-98, 1996. DOI: https://doi.org/10.3147/jsfp.31.93 DOI: https://doi.org/10.3147/jsfp.31.93

Saulnier, P., and Andremont, A., Detection of genes in feces by booster polymerase chain reaction. Journal of Clinical Microbiology, 30(8), pp. 2080-2083, 1992. DOI: https://doi.org/10.1128/JCM.30.8.2080-2083.1992 DOI: https://doi.org/10.1128/jcm.30.8.2080-2083.1992

Wilson, I.G., Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63(10), pp. 3741-3751, 1997. DOI: https://doi.org/10.1128/aem.63.10.3741-3751.1997 DOI: https://doi.org/10.1128/aem.63.10.3741-3751.1997

Opel, K.L., Chung D., and McCord, B.R., A study of PCR inhibition mechanisms using real time PCR. Journal of Forensic Sciences, 55, pp. 25-33, 2010. DOI: https://doi.org/10.1111/j.1556-4029.2009.01245.x DOI: https://doi.org/10.1111/j.1556-4029.2009.01245.x

Martínez-López, A., Hakspiel-Segura, C., Escobedo-Urías, D.C., and González-Acosta, B., Influence of agriculture and aquaculture activities on the response of autotrophic picoplankton in Laguna Macapule, Gulf of California (Mexico). Ecological Processes, 6, pp. 6, 2017. DOI: https://doi.org/10.1186/s13717-017-0074-8 DOI: https://doi.org/10.1186/s13717-017-0074-8

Góngora-Gómez, A.M., Domínguez-Orozco, A.L. Villanueva-Fonseca, B.P., Muñoz-Sevilla, N.P., and García-Ulloa, M., Seasonal levels of heavy metals in soft tissue and muscle of the pen shell Atrina maura (Sowerby, 1835) (Bivalvia: Pinnidae) from a farm in the southeastern coast of the Gulf of California, Mexico. Revista Internacional de Contaminación Ambiental, 34(1), pp. 57-68, 2018. DOI: https://doi.org/10.20937/RICA.2018.34.01.05 DOI: https://doi.org/10.20937/RICA.2018.34.01.05

Natividad, K.D.T., Nomura, N., and Matsumura, M., Detection of white spot syndrome virus D.N.A. in pond soil using a 2-step nested PCR. Journal of Virological Methods, 149(1), pp. 28-34, 2008. DOI: https://doi.org/10.1016/j.jviromet.2008.01.013 DOI: https://doi.org/10.1016/j.jviromet.2008.01.013

Kumar, S.S., Bharathi, R.A., Rajan, J.J.S., Alavandi, S.V., Poornima, M., Balasubramanian, C.P., and Ponniah, A.G., Viability of white spot syndrome virus (WSSV) in sediment during sun-drying (drainable pond) and under non-drainable pond conditions indicated by infectivity to shrimp. Aquaculture, 402-403, pp. 119-126, 2013. DOI: https://doi.org/10.1016/j.aquaculture.2013.04.001 DOI: https://doi.org/10.1016/j.aquaculture.2013.04.001

Vergara-Méndez, S., Ortiz-Gallarza, S.M., y García-Leal, M.L., Estudio sedimentológico de las bahías de San Ignacio y Navachiste en Sinaloa, México. Ingeniería Investigación y Tecnología, 2(1), pp. 11-26, 2001. DOI: https://doi.org/10.22201/fi.25940732e.2001.02n1.002 DOI: https://doi.org/10.22201/fi.25940732e.2001.02n1.002

Martínez-López, A., Escobedo-Urías, D.C., Reyes-Salinas, A., Hernández-Real, M.T., Phytoplankton response to nutrient runoff in a large lagoon system in the Gulf of California. Hidrobiologica, 17(2), pp. 101-112, 2007.

Sánchez-Lindoro, F. de J., Jiménez-Illescas, A.R., Espinosa-Carreón, T.L., y Obeso-Nieblas, M. Modelo hidrodinámico en el Sistema Lagunar Navachiste, Guasave, Sinaloa, México. Revista de Biología Marina y Oceanografía, 52(2), pp. 219-231, 2017. DOI: https://doi.org/10.4067/S0718-19572017000200003 DOI: https://doi.org/10.4067/S0718-19572017000200003

Engel, A., Endres, S., Galgani, L., and Schartau, M., Marvelous marine microgels: on the distribution and impact of gel-like particles in the oceanic water-column. Frontiers in Marine Science, 7, pp. 405, 2020. DOI: https://doi.org/10.3389/fmars.2020.00405 DOI: https://doi.org/10.3389/fmars.2020.00405

Hakspiel-Segura, C., Cajal-Medrano, R., Maske-Rubach, H., Villegas-Mendoza, J., Temporal and spatial distribution of transparent exopolymer particles off the northern coast of Baja California, Mexico. Ciencias Marinas, 43(4), pp. 249-267, 2017. DOI: https://doi.org/10.7773/cm.v43i4.2732 DOI: https://doi.org/10.7773/cm.v43i4.2732

Vijayan, K.K., Stalin, V.R., Balasubramanian, C.P., Alavandi, S.V., Thillai, S.V., and Santiago, T.C., Polychaete worms – a vector for white spot syndrome virus (WSSV). Diseases of Aquatic Organisms, 63(2-3), pp. 107-111, 2005. DOI: https://doi.org/10.3354/dao063107 DOI: https://doi.org/10.3354/dao063107

Escobedo-Bonilla, C.M., Alday-Sanz, V., Wille, M., Sorgeloos P., Pensaert, M.B., and Nauwynck, H.J., A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. Journal Fish Disease, 31(1), pp. 1-18, 2008. DOI: https://doi.org/10.1111/j.1365-2761.2007.00877.x DOI: https://doi.org/10.1111/j.1365-2761.2007.00877.x

Ramírez-Douriet, C., Detección molecular del virus de la mancha blanca (WSSV) en el sistema Lagunar San Ignacio - Navachiste - Macapule y en estanques de cultivo de camarón. Master’s Thesis, CIIDIR-IPN Sinaloa, México, 2005, 84 P.

Porchas-Cornejo, M.A., Alvarez-Ruiz, P., Alvarez-Tello, F.J., Martínez-Porchas, M., Martínez-Córdova, L.R., López-Martínez, J., and García-Morales, R., Detection of the white spot syndrome virus in zooplankton samples collected off the coast of Sonora, México. Aquaculture Research, 49(1), pp. 48-56, 2017. DOI: https://doi.org/10.1111/are.13431 DOI: https://doi.org/10.1111/are.13431

Rahman, M.M., Escobedo-Bonilla, C.M., Corteel, M., Dantas-Lima, J.J., Wille, M., Alday-Sanz, V., Pensaert, M.B., Sorgeloos, P., and Nauwynck, H.J., Effect of high water temperature (33°C) on the clinical and virological outcome of experimental infection with white spot virus (WSSV) in specific pathogen-free (SPF) Litopenaeus vannamei. Aquaculture, 261, pp. 842-849, 2006. DOI: https://doi.org/10.1016/j.aquaculture.2006.09.007 DOI: https://doi.org/10.1016/j.aquaculture.2006.09.007

Hakspiel-Segura, C., Variación estacional de la trama trófica microbiana en la laguna de Macapule, Sinaloa, MSc. Thesis, Departamento de Plancton y Ecologia Marina, CICIMAR-IPN, México, 2009. 183 P.

Zhang, J.S., Dong, S.L., Tian, X.L., Dong, Y.W., Liu, X.Y., and Yan. D.C., Virus –phytoplankton adhesion a new WSSV transmission route to zooplankton. Acta Oceanologica Sinica, 23, pp. 109-115, 2007.

van der Schalie, W.H., and Austin, H.K., Report on the shrimp virus peer review and risk assessment workshop: Developing a qualitative ecological risk assessment, Washington, DC, U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, EPA/630/R-98/001A, [online]. 1999, pp. 65-68. Available at: https://cfpub.epa.gov/ncea/risk/era/recordisplay.cfm?deid=12880

Chamberlain, G., Lightner, D., Towner, R., van Wyk, P., Villarreal, M., Akazawa, N., and Alvial, A., Case study of the outbreak of white spot syndrome virus at shrimp farms in Mozambique and Madagascar: impacts and management recommendations, St. Louis, U.S.A., Responsible Aquaculture Foundation, [online]. 2013, 93P. Available at: https://www.globalseafood.org/wp-content/uploads/2015/02/raf_wssv-report2.pdf

Selvam, D.G., Mujeeb-Rahiman, K.M., and Mohamed-Hatha, A.A., An investigation into occasional White Spot Syndrome Virus outbreak in traditional paddy cum prawn fields in India. Scientific World Journal, 2012, art. 340830. DOI: https://doi.org/10.1100/2012/340830 DOI: https://doi.org/10.1100/2012/340830

Durán-Avelar, M.J., Pérez-Enríquez, R., Zambrano-Zaragoza, J.F., Montoya-Rodríguez, L., Vázquez-Juárez, R., and Vibanco-Pérez, N., Genotyping WSSV isolates from northwestern Mexican shrimp farms affected by white spot disease outbreaks in 2010 –2012. Diseases of Aquatic Organism, 114(1), pp. 11-20, 2015. DOI: https://doi.org/10.3354/dao02844 DOI: https://doi.org/10.3354/dao02844

Cómo citar

IEEE

[1]
C. Hakspiel-Segura, A. Martínez-López, M. López-Meyer, y D. C. Escobedo-Urías, «Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California», DYNA, vol. 91, n.º 231, pp. 63–68, ene. 2024.

ACM

[1]
Hakspiel-Segura, C., Martínez-López, A., López-Meyer, M. y Escobedo-Urías, D.C. 2024. Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California. DYNA. 91, 231 (ene. 2024), 63–68. DOI:https://doi.org/10.15446/dyna.v91n231.110250.

ACS

(1)
Hakspiel-Segura, C.; Martínez-López, A.; López-Meyer, M.; Escobedo-Urías, D. C. Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California. DYNA 2024, 91, 63-68.

APA

Hakspiel-Segura, C., Martínez-López, A., López-Meyer, M. y Escobedo-Urías, D. C. (2024). Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California. DYNA, 91(231), 63–68. https://doi.org/10.15446/dyna.v91n231.110250

ABNT

HAKSPIEL-SEGURA, C.; MARTÍNEZ-LÓPEZ, A.; LÓPEZ-MEYER, M.; ESCOBEDO-URÍAS, D. C. Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California. DYNA, [S. l.], v. 91, n. 231, p. 63–68, 2024. DOI: 10.15446/dyna.v91n231.110250. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/110250. Acesso em: 11 oct. 2024.

Chicago

Hakspiel-Segura, Cristian, Aída Martínez-López, Melina López-Meyer, y Diana Cecilia Escobedo-Urías. 2024. «Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California». DYNA 91 (231):63-68. https://doi.org/10.15446/dyna.v91n231.110250.

Harvard

Hakspiel-Segura, C., Martínez-López, A., López-Meyer, M. y Escobedo-Urías, D. C. (2024) «Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California», DYNA, 91(231), pp. 63–68. doi: 10.15446/dyna.v91n231.110250.

MLA

Hakspiel-Segura, C., A. Martínez-López, M. López-Meyer, y D. C. Escobedo-Urías. «Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California». DYNA, vol. 91, n.º 231, enero de 2024, pp. 63-68, doi:10.15446/dyna.v91n231.110250.

Turabian

Hakspiel-Segura, Cristian, Aída Martínez-López, Melina López-Meyer, y Diana Cecilia Escobedo-Urías. «Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California». DYNA 91, no. 231 (enero 24, 2024): 63–68. Accedido octubre 11, 2024. https://revistas.unal.edu.co/index.php/dyna/article/view/110250.

Vancouver

1.
Hakspiel-Segura C, Martínez-López A, López-Meyer M, Escobedo-Urías DC. Detection of white spot syndrome virus in seston from a coastal ecosystem and a shrimp farm in the Gulf of California. DYNA [Internet]. 24 de enero de 2024 [citado 11 de octubre de 2024];91(231):63-8. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/110250

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

124

Descargas

Los datos de descargas todavía no están disponibles.