Publicado

2024-02-15

Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem

Corrección de interpretaciones erróneas sobre la distribución de longitudes de solución factibles en el problema del viajante

DOI:

https://doi.org/10.15446/dyna.v91n231.110389

Palabras clave:

traveling salesman problem; distribution fitting; graph theory (en)
problema del viajante de comercio; accesorios de distribución; teoría de grafos (es)

Descargas

Autores/as

The traveling salesman problem (TSP) is the canonical combinatorial optimization problem famous throughout literature.  There exists an objective function associated with every feasible solution.  However, the increase in the number of possible solutions makes this an NP-Hard problem.  We show that the central limit theorem (CLT) applies to the problem.  We then conduct extensive computational testing to show that the cycle lengths tend to a normal distribution as the problem grows large.  When the size of the TSP problem exceeds computational power, better understanding solution distributions allows us to save resources.  This is a non-trivial result as understanding solution distributions in huge TSP problems helps us to minimize computational effort that may not lead to significantly better results.

El problema del agente viajero (“Traveling Salesman Problem” o TSP) es el problema canónico de optimización combinatoria usando en la literatura. Existe una función objetivo asociada con cada solución factible. Sin embargo, la tasa de aumento en el número de soluciones posibles hace que este sea un problema NP Difícil. Mostramos que el teorema del límite central (Central Limit Theorem o CLT) se aplica al problema y luego realizamos pruebas computacionales extensas para mostrar que las longitudes de los ciclos tienden a una distribución normal a medida que el tamaño del problema crece. Cuando el tamaño del problema TSP excede el poder computacional, una mejor comprensión de las distribuciones de soluciones nos permite ahorrar recursos. Este es un resultado no trivial, ya que comprender las distribuciones de soluciones en problemas TSP enormes nos ayuda a minimizar el esfuerzo computacional que puede no conducir a resultados significativamente mejores.

Referencias

Golden, B.L., A statistical approach to the TSP. Networks. 7(3), pp. 209-225, 1977. DOI: https://doi.org/10.1002/net.3230070303. DOI: https://doi.org/10.1002/net.3230070303

Derigs, U., Using confidence limits for the global optimum in combinatorial optimization. Operations Research. 33(5), pp. 1024-1049, 1985. DOI: https://doi.org/10.1287/opre.33.5.1024.

Flood, M.M., The traveling-salesman problem. Operations Research. 4(1), pp. 61-75, 1956. DOI: https://doi.org/10.1287/opre.4.1.61. DOI: https://doi.org/10.1287/opre.4.1.61

Jessen, R.J., The master sample project and its use in agricultural economics. Journal of Farm Economics. 29(2), pp. 531-540, 1947. DOI: https://doi.org/10.2307/1232392. DOI: https://doi.org/10.2307/1232392

Mahalanobis, P.C., A sample survey of the acreage under jute in Bengal. Sankhyā: The Indian Journal of Statistics. [online]. 4(4), pp. 511-530, 1940. Available at: http://www.jstor.org/stable/40383954.

Dantzig, G., Fulkerson, R., and Johnson, S., Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America. 2(4), pp. 393-410, 1954. DOI: https://doi.org/10.1287/opre.2.4.393 DOI: https://doi.org/10.1287/opre.2.4.393

Cook, W.J., Applegate, D.L., Bixby, R.E., and Chvatal, V., The traveling salesman problem: a computational study. Princeton University Press, Princeton, NJ, USA, 2011. DOI: https://doi.org/10.1515/9781400841103

Bellmore, M., and Nemhauser, G.L., The traveling salesman problem: a survey. Operations Research. 16(3), pp. 538-558, 1968. DOI: https://doi.org/10.1287/opre.16.3.538 DOI: https://doi.org/10.1287/opre.16.3.538

Hougardy, S., and Zhong, X., Hard to solve instances of the Euclidean Traveling Salesman Problem. Mathematical Programming Computation. 13, pp. 51-74, 2021. DOI: https://doi.org/10.1007/s12532-020-00184-5 DOI: https://doi.org/10.1007/s12532-020-00184-5

Zhong, X., Slightly improved upper bound on the integrality ratio for the s− t Path TSP. Operations Research Letters. 48(5), pp. 627-629, 2020. DOI: https://doi.org/10.1016/j.orl.2020.07.015. DOI: https://doi.org/10.1016/j.orl.2020.07.015

Caracciolo, S., Di Gioacchino, A., Gherardi, M., and Malatesta, E.M., Solution for a bipartite Euclidean traveling-salesman problem in one dimension. Physical Review E. 97(5), art. 052109, 2018. DOI: https://doi.org/10.1103/PhysRevE.97.052109 DOI: https://doi.org/10.1103/PhysRevE.97.052109

Vannimenus, J., and Mézard, M., On the statistical mechanics of optimization problems of the travelling salesman type. Journal de Physique Lettres. 45(24), pp. 1145-1153, 1984. DOI: https://doi.org/10.1051/jphyslet:0198400450240114500. DOI: https://doi.org/10.1051/jphyslet:0198400450240114500

Beardwood, J., Halton, J.H., and Hammersley, J.M., The shortest path through many points. In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press. 55(4), pp. 299-327, 1959. DOI: https://doi.org/10.1017/S0305004100034095. DOI: https://doi.org/10.1017/S0305004100034095

Steele, J.M., Probability and problems in Euclidean combinatorial optimization. Statistical Science. 1, pp. 48-56, 1993. DOI: https://doi.org/10.1214/ss/1177011083. DOI: https://doi.org/10.1214/ss/1177011083

Derigs, U., Using confidence limits for the global optimum in combinatorial optimization. Operations Research. 33(5), pp. 1024-1049, 1985. DOI: https://doi.org/10.1287/opre.33.5.1024. DOI: https://doi.org/10.1287/opre.33.5.1024

Carling, K., and Meng, X., On statistical bounds of heuristic solutions to location problems. Journal of Combinatorial Optimization. 31, pp. 1518-1549, 2016. DOI: https://doi.org/10.1007/s10878-015-9839-0. DOI: https://doi.org/10.1007/s10878-015-9839-0

Giddings, A.P., Rardin, R.L., and Uzsoy, R., Statistical optimum estimation techniques for combinatorial optimization problems: a review and critique. Journal of Heuristics. 20, pp. 329-358, 2014. DOI: https://doi.org/10.1007/s10732-014-9243-4. DOI: https://doi.org/10.1007/s10732-014-9243-4

Marin, A., and Salmeron, J., Tactical design of rail freight networks. Part II: local search methods with statistical analysis. European Journal of Operational Research, 94(1), pp. 43-53, 1996. DOI: https://doi.org/10.1016/0377-2217(95)00193-X. DOI: https://doi.org/10.1016/0377-2217(95)00193-X

Di Placido, A., Archetti, C., Cerrone, C., and Golden, B., The generalized close enough traveling salesman problem. European Journal of Operational Research. 310(3), pp. 974-991, 2023. DOI: https://doi.org/10.1016/j.ejor.2023.03.010 DOI: https://doi.org/10.1016/j.ejor.2023.04.010

Barvinok, A., Gimadi, E.K., and Serdyukov, A.I., The maximum TSP. In: Gutin, G., and Punnen, A.P. (eds), The traveling salesman problem and its variations. Combinatorial Optimization, vol 12. Springer, Boston, MA, -USA. 2007, DOI: https://doi.org/10.1007/0-306-48213-4_12 DOI: https://doi.org/10.1007/0-306-48213-4_12

Cerf, N.J., De Monvel, J.B.,, Bohigas O., Martin, O.C., Percus, A.G., The random link approximation for the Euclidean traveling salesman problem. Journal de Physique I. 7(1), pp. 117-136, 1997. DOI: https://doi.org/10.1051/jp1:1997129. DOI: https://doi.org/10.1051/jp1:1997129

Harary, F., Beineke, L.W., A seminar on graph theory, Dover Edition, Dover Publications, Inc, Mineola, New York, USA, 2015.

Bóna, M., A walk through combinatorics: an introduction to enumeration and graph theory. World Scientific, Singapur, 2006. DOI: https://doi.org/10.1142/10258. DOI: https://doi.org/10.1142/6177

Gnedenko, B.V., Theory of Probability, 6th Edition, Routledge, Amsterdam, The Netherlands, 2018. DOI: https://doi.org/10.1201/9780203718964. DOI: https://doi.org/10.1201/9780203718964

Bickel, P.I., and Doksum, K.A., Mathematical statistics: basic ideas and selected topics, Volumes I-II Package, 0th Edition, Chapman and Hall/CRC, 2015. DOI: https://doi.org/10.1201/9781315369266. DOI: https://doi.org/10.1201/9781315369266

Hogg, R.V., Tanis, E.A., and Zimmerman, D.L., Probability and statistical inference, Vol. 993, Macmillan, New York, USA, 1977.

Terçariol, C.A., and Martinez, A.S., An efficient algorithm to generate random uncorrelated Euclidean distances: the random link model. Brazilian Journal of Physics. 36, pp. 232-236, 2006. DOI: https://doi.org/10.1590/S0103-97332006000200017. DOI: https://doi.org/10.1590/S0103-97332006000200017

Reinelt, G., TSPLIB95. Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Heidelberg. 338, pp. 1-6, 1995.

D'agostino, R.B., Belanger, A., D'Agostino Jr., R.B., A suggestion for using powerful and informative tests of normality. The American Statistician. 44(4), pp. 316-321, 1990. DOI: https://doi.org/10.2307/2684359. DOI: https://doi.org/10.1080/00031305.1990.10475751

Thadewald, T.,and Büning, H., Jarque–Bera test and its competitors for testing normality–a power comparison. Journal of applied statistics. 34(1), pp. 87-105, 2007. DOI: https://doi.org/10.1080/02664760600994539. DOI: https://doi.org/10.1080/02664760600994539

Das, K.R., and Imon, A.H., A brief review of tests for normality. American Journal of Theoretical and Applied Statistics. 5(1), pp. 5-12, 2016. DOI: https://doi.org/10.11648/j.ajtas.20160501.12. DOI: https://doi.org/10.11648/j.ajtas.20160501.12

Yazici, B., and Yolacan, S., A comparison of various tests of normality. Journal of Statistical Computation and Simulation. 77(2), pp. 175-183, 2017. DOI: https://doi.org/10.1080/10629360600678310. DOI: https://doi.org/10.1080/10629360600678310

Enomoto, R., Hanusz, Z., Hara, A., and Seo, T., Multivariate normality test using normalizing transformation for Mardia’s multivariate kurtosis. Communications in Statistics-Simulation and Computation. 49(3), pp. 684-698, 2020. DOI: https://doi.org/10.1080/03610918.2019.1661476 DOI: https://doi.org/10.1080/03610918.2019.1661476

Cómo citar

IEEE

[1]
J. L. Shaw, D. Fuqua, H. Sohn, M. I. Rodriguez-Borbon, y V. Pimentel, «Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem», DYNA, vol. 91, n.º 231, pp. 57–62, ene. 2024.

ACM

[1]
Shaw, J.L., Fuqua, D., Sohn, H., Rodriguez-Borbon , M.I. y Pimentel, V. 2024. Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem. DYNA. 91, 231 (ene. 2024), 57–62. DOI:https://doi.org/10.15446/dyna.v91n231.110389.

ACS

(1)
Shaw, J. L.; Fuqua, D.; Sohn, H.; Rodriguez-Borbon , M. I.; Pimentel, V. Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem. DYNA 2024, 91, 57-62.

APA

Shaw, J. L., Fuqua, D., Sohn, H., Rodriguez-Borbon , M. I. y Pimentel, V. (2024). Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem. DYNA, 91(231), 57–62. https://doi.org/10.15446/dyna.v91n231.110389

ABNT

SHAW, J. L.; FUQUA, D.; SOHN, H.; RODRIGUEZ-BORBON , M. I.; PIMENTEL, V. Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem. DYNA, [S. l.], v. 91, n. 231, p. 57–62, 2024. DOI: 10.15446/dyna.v91n231.110389. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/110389. Acesso em: 17 jul. 2024.

Chicago

Shaw, Jerry L., Donovan Fuqua, Hansuk Sohn, Manuel Ivan Rodriguez-Borbon, y Victor Pimentel. 2024. «Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem». DYNA 91 (231):57-62. https://doi.org/10.15446/dyna.v91n231.110389.

Harvard

Shaw, J. L., Fuqua, D., Sohn, H., Rodriguez-Borbon , M. I. y Pimentel, V. (2024) «Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem», DYNA, 91(231), pp. 57–62. doi: 10.15446/dyna.v91n231.110389.

MLA

Shaw, J. L., D. Fuqua, H. Sohn, M. I. Rodriguez-Borbon, y V. Pimentel. «Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem». DYNA, vol. 91, n.º 231, enero de 2024, pp. 57-62, doi:10.15446/dyna.v91n231.110389.

Turabian

Shaw, Jerry L., Donovan Fuqua, Hansuk Sohn, Manuel Ivan Rodriguez-Borbon, y Victor Pimentel. «Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem». DYNA 91, no. 231 (enero 24, 2024): 57–62. Accedido julio 17, 2024. https://revistas.unal.edu.co/index.php/dyna/article/view/110389.

Vancouver

1.
Shaw JL, Fuqua D, Sohn H, Rodriguez-Borbon MI, Pimentel V. Correcting misinterpretations on the distribution of feasible solution lengths in the traveling salesman problem. DYNA [Internet]. 24 de enero de 2024 [citado 17 de julio de 2024];91(231):57-62. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/110389

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

71

Descargas

Los datos de descargas todavía no están disponibles.