Publicado

2024-02-15

Effects of saline and water stress on sweet sorghum

Efectos del estrés salino e hídrico en el sorgo dulce

DOI:

https://doi.org/10.15446/dyna.v91n231.110842

Palabras clave:

Sorghum bicolor; water deficit; salinity; gas exchange (en)
Sorghum bicolor; déficit de agua; salinidad; intercambio de gases (es)

Descargas

Autores/as

Sweet sorghum (Sorghum bicolor [L.] Moench) is a plant that can be an alternative for the production of bioethanol in semi-arid regions. The objective of this work was to evaluate sweet sorghum 'BRS 506' under salt and water stress. The experimental design was in randomized blocks, in a factorial scheme (4x4), with the first factor referring to the electrical conductivities of the irrigation water (1.5; 3.0; 4.5; and 6.0 dS m-1) and the second refers to irrigation depths (53, 67, 85 and 95% of crop evapotranspiration). Gas exchange, leaf water status, leaf sugars and plant growth were evaluated. Salt and water stress cause negative effects on the growth of sweet sorghum 'BRS 506'. Salt stress causes disturbances in gas exchange and sugar levels. Sweet sorghum 'BRS 506' is tolerant to combined salt and water stress.

El sorgo dulce (Sorghum bicolor [L.] Moench) es una planta que puede ser una alternativa para la producción de bioetanol en regiones semiáridas. El objetivo de este trabajo fue evaluar el sorgo dulce 'BRS 506' bajo estrés hídrico y salino. El diseño experimental fue en bloques al azar, en esquema factorial (4x4), siendo el primer factor referido a las conductividades eléctricas del agua de riego (1.5; 3.0; 4.5; y 6.0 dS m-1) y el segundo a las aspas de riego (53, 67, 85 y 95% de la evapotranspiración del cultivo). Se evaluaron el intercambio de gases, el estado hídrico de las hojas, los azúcares de las hojas y el crecimiento de las plantas. El estrés salino e hídrico provoca efectos negativos en el crecimiento del sorgo dulce 'BRS 506'. El estrés salino provoca alteraciones en el intercambio de gases y en los niveles de azúcar. El sorgo dulce 'BRS 506' es tolerante al estrés salino y hídrico conjunto.

Referencias

Naoura, G., Emendack, Y., Baloua, N., Vom Brocke, K., Hassan, M. A., Sawadogo, N., Nodjasse, A.D., Djinodji R., Trouche, G. and Laza, H.E., Characterization of semi-arid Chadian sweet sorghum accessions as potential sources for sugar and ethanol production. Scientific Reports, 10(1), pp. 14947, 2020. DOI: https://doi.org/10.1038/s41598-020-71506-9 DOI: https://doi.org/10.1038/s41598-020-71506-9

Silva, H.J.T., Santos, P.F.A., Nogueira Jr, E.C. and Vian, C.E.D.F., Aspectos técnicos e econômicos da produção de etanol de milho no Brasil. Revista de Política Agrícola, 29(4), pp. 142, 2020.

Batista, V.A.P., Batista, V.Z.P., Pimentel, L.D., Barros, A.F., Moreira, T.D.S. and Dias, L.A.D.S., Produção de açúcares no caldo de sorgo sacarino avaliado em duas épocas de corte. Revista Brasileira de Milho e Sorgo, 17(2), pp. 263-273, 2018. DOI: https://doi.org/10.18512/1980-6477/rbms.v17n2p263-273 DOI: https://doi.org/10.18512/1980-6477/rbms.v17n2p263-273

Disasa, T., Feyissa, T., Admassu, B., Fetene, M. and Mendu, V., Mapping of QTLs associated with brix and biomass-related traits in sorghum using SSR markers. Sugar Tech, 20, pp. 275-285, 2018. DOI: https://doi.org/10.1007/s12355-018-0590-6 DOI: https://doi.org/10.1007/s12355-018-0590-6

Briand, C.H., Geleta, S.B. and Kratochvil, R.J., Sweet sorghum (Sorghum bicolor [L.] Moench) a potential biofuel feedstock: analysis of cultivar performance in the Mid-Atlantic. Renewable Energy, 129, pp. 328-333, 2018. DOI: https://doi.org/10.1016/j.renene.2018.06.004 DOI: https://doi.org/10.1016/j.renene.2018.06.004

Li, H., Li, Y., Ke, Q., Kwak, S.S., Zhang, S. and Deng, X., Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. International Journal of Molecular Sciences, 21(23), pp. 9174, 2020. DOI: https://doi.org/10.3390/ijms21239174 DOI: https://doi.org/10.3390/ijms21239174

Abreha, K.B., Enyew, M., Carlsson, A.S., Vetukuri, R.R., Feyissa, T., Motlhaodi, T., Ng’uni, D. and Geleta, M, Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta, 255, pp. 1-23, 2022. DOI: https://doi.org/10.1007/s00425-021-03799-7 DOI: https://doi.org/10.1007/s00425-021-03799-7

Motsi, H., Molapo, M. and Phiri, E.E., A review on sweet sorghum adaptive capacity on improving food security and poverty alleviation in sub-Saharan Africa. South African Journal of Botany, 150, pp. 323-329, 2022. DOI: https://doi.org/10.1016/j.sajb.2022.07.040 DOI: https://doi.org/10.1016/j.sajb.2022.07.040

Bian, Y., Deng, X., Yan, X., Zhou, J., Yuan, L. and Yan, Y., Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Scientific Reports, 7(1), art. 46183, 2017. DOI: https://doi.org/10.1038/srep46183 DOI: https://doi.org/10.1038/srep46183

Harris-Shultz, K.R., Hayes, C.M. and Knoll, J.E., Mapping QTLs and identification of genes associated with drought resistance in sorghum. Sorghum: Methods and Protocols, 1931, pp. 11-40, 2019. DOI: https://doi.org/10.1007/978-1-4939-9039-9_2 DOI: https://doi.org/10.1007/978-1-4939-9039-9_2

Coelho, D.S., Simões, W.L., Salviano, A.M., Mesquita, A.C. and Alberto, K.D.C., Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, pp. 231-236, 2018. DOI: http://dx.doi.org/10.1590/1807-1929/agriambi.v22n4p231-236 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n4p231-236

Amoah, J.N. and Antwi-Berko, D., Comparative physiological, biochemical and transcript response to drought in sorghum genotypes. Biotechnology Journal International, 24(3), pp. 1-14, 2020. DOI: https://doi.org/10.9734/BJI/2020/v24i330102 DOI: https://doi.org/10.9734/bji/2020/v24i330102

Stefanov, M.A., Rashkov, G.D., Yotsova, E.K., Borisova, P.B., Dobrikova, A.G. and Apostolova, E.L., Protective effects of sodium nitroprusside on photosynthetic performance of Sorghum bicolor L. under Salt Stress. Plants, 12(4), art. 832, 2023. DOI: https://doi.org/10.3390/plants12040832 DOI: https://doi.org/10.3390/plants12040832

Mbinda, W. and Kimtai, M., Evaluation of morphological and biochemical characteristics of sorghum [Sorghum bicolor [L.] Moench] varieties in response salinity stress. Annual Research & Review in Biology, 33(1), pp. 1-9, 2019. DOI: https://doi.org/10.9734/ARRB/2019/v33i130110 DOI: https://doi.org/10.9734/arrb/2019/v33i130110

Calone, R., Sanoubar, R., Lambertini, C., Speranza, M., Antisari, L.V., Vianello, G. and Barbanti, L., Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants, 9(5), art. 561, 2020. DOI: https://doi.org/10.3390/plants9050561 DOI: https://doi.org/10.3390/plants9050561

Dhaka, P., Tallapragada, S., Devi, S. and Dhaka, B.K., Implication of Jasmonic acid on physiological alterations on salt stressed fodder Sorghum (Sorghum bicolor L.). International Journal of Environment and Climate Change, 13(8), pp. 649-660, 2023. DOI: https://doi.org/10.9734/ijecc/2023/v13i81993

Huang, R., Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 17(4), pp. 739-746, 2018. DOI: https://doi.org/10.1016/S2095-3119(17)61728-3 DOI: https://doi.org/10.1016/S2095-3119(17)61728-3

Silva, E.M., Magalhães, P.C., Castro, E.M., Ávila, R.G. and Almeida, L.G., Modifications in the root system, gas exchanges and productivity of sorghum hybrids cultivated under water déficit. Revista Brasileira de Milho e Sorgo, 17(3), pp. 380-389, 2018. DOI: https://doi.org/10.18512/1980-6477/rbms.v17n3p380-389 DOI: https://doi.org/10.18512/1980-6477/rbms.v17n3p380-389

Mansour, M.M.F., Emam, M.M., Salama, K.H.A. and Morsy, A.A., Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. Planta, 254, pp. 1-38, 2021. DOI: https://doi.org/10.1007/s00425-021-03671-8 DOI: https://doi.org/10.1007/s00425-021-03671-8

O’connell, E., Towards adaptation of water resource systems to climatic and socio-economic change. Water Resources Management, 31, pp. 2965-2984, 2017. DOI: https://doi.org/10.1007/s11269-017-1734-2 DOI: https://doi.org/10.1007/s11269-017-1734-2

Lu, S., Bai, X., Li, W. and Wang, N., Impacts of climate change on water resources and grain production. Technological Forecasting and Social Change, 143, pp. 76-84, 2019. DOI: https://doi.org/10.1016/j.techfore.2019.01.015 DOI: https://doi.org/10.1016/j.techfore.2019.01.015

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.D.M. and Sparovek, G., Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), pp. 711-728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507

Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Araujo Filho, J.C., Oliveira, J. B. and Cunha, T.J.F., Sistema brasileiro de classificação de solos. (5a ed.), Embrapa Solos, Rio de Janeiro, Brazil, 2018.

Costa, A.R.F.C., and Medeiros, J.F., Água salina como alternativa para irrigação de sorgo para geração de energia no Nordeste brasileiro. Water Resources and Irrigation Management, 6(3), pp. 169-177, 2017.

Silva Júnior, L.G.D.A., Gheyi, H.R. and Medeiros, J.F.D., Composição química de águas do cristalino do Nordeste Brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 3, pp. 11-17, 1999. DOI: https://doi.org/10.1590/1807-1929/agriambi.v3n1p11-17 DOI: https://doi.org/10.1590/1807-1929/agriambi.v3n1p11-17

Ayers, R.S. and Westcot, D.W., A qualidade de água na agricultura. 2a ed., FAO Irrigação e Drenagem, 29, UFPB, Campina Grande, Brazil, 1999. 153P.

Allen, R.G., Pruitt, W.O., Wright, J.L., et al., A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 81(1-2), pp. 1-22, 2006. DOI: https://doi.org/10.1016/j.agwat.2005.03.007 DOI: https://doi.org/10.1016/j.agwat.2005.03.007

Lutts, S., Kinet, J.M. and Bouharmont, J., NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), pp. 389-398, 1996. DOI: https://doi.org/10.1006/anbo.1996.0134 DOI: https://doi.org/10.1006/anbo.1996.0134

Čatský, J., Determination of water deficit in disks cut out from leaf blades. Biologia Plantarum, 2(1), pp. 76-78, 1960. DOI: https://doi.org/10.1007/BF02920701 DOI: https://doi.org/10.1007/BF02920701

Yemm, E.W. and Willis, A., The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), pp. 508, 1954. DOI: https://doi.org/10.1042/bj0570508 DOI: https://doi.org/10.1042/bj0570508

Somogyi, M. and Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, pp. 375-380, 1944. DOI: https://doi.org/10.1016/S0021-9258(18)71980-7

Tavares, J.T.D.Q., Cardoso, R.L., Costa, J.A., Fadigas, F.D.S. and Fonseca, A.A., Interferência do ácido ascórbico na determinação de açúcares redutores pelo método de Lane e Eynon. Química Nova, 33, pp. 805-809, 2010. DOI: https://doi.org/10.1590/S0100-40422010000400008

R CORE TEAM. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2022.

SYSTAT SOFTWARE. INC. SigmaPlot for Windows, version 12.3. Cranes, San Jose, Costa Rica, 2013.

Navada, S., Vadstein, O., Gaumet, F., Tveten, A.K., Spanu, C., Mikkelsen, Ø. and Kolarevic, J., Biofilms remember: osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms. Water Research, 176, art. 115732, 2020. DOI: https://doi.org/10.1016/j.watres.2020.115732 DOI: https://doi.org/10.1016/j.watres.2020.115732

Pan, T., Liu, M., Kreslavski, V.D., Zharmukhamedov, S.K., Nie, C., Yu, M., Kuznetsov, V.V., Allakhverdiev, S.I. and Shabala, S., Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, 51(8), pp. 791-825, 2021. DOI: https://doi.org/10.1080/10643389.2020.1735231 DOI: https://doi.org/10.1080/10643389.2020.1735231

Isayenkov, S.V. and Maathuis, F.J.M., Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, art. 80, 2019. DOI: https://doi.org/10.3389/fpls.2019.00080 DOI: https://doi.org/10.3389/fpls.2019.00080

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S., Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, pp. 64-77, 2020. DOI: https://doi.org/10.1016/j.plaphy.2020.08.042 DOI: https://doi.org/10.1016/j.plaphy.2020.08.042

Queiroz, G.C.M., Medeiros, J.F., Silva, R.R., et al., Growth, solute accumulation, and ion distribution in sweet sorghum under salt and drought stresses in a Brazilian Potiguar Semiarid Area. Agriculture, 13(4), art. 803, 2023. DOI: https://doi.org/10.3390/agriculture13040803 DOI: https://doi.org/10.3390/agriculture13040803

Challabathula, D., Analin, B., Mohanan, A. and Bakka, K., Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and-tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Journal of Plant Physiology, 268, art. 153583, 2022. DOI: https://doi.org/10.1016/j.jplph.2021.153583 DOI: https://doi.org/10.1016/j.jplph.2021.153583

Cómo citar

IEEE

[1]
L. V. de Sousa, R. R. da Silva, M. V. Pires de Souza, G. Carvalho Maia de Queiroz, M. I. Batista Clemente, y J. F. de Medeiros, «Effects of saline and water stress on sweet sorghum», DYNA, vol. 91, n.º 231, pp. 69–75, ene. 2024.

ACM

[1]
Sousa, L.V. de, da Silva, R.R., Pires de Souza, M.V., Carvalho Maia de Queiroz, G., Batista Clemente, M.I. y de Medeiros, J.F. 2024. Effects of saline and water stress on sweet sorghum. DYNA. 91, 231 (ene. 2024), 69–75. DOI:https://doi.org/10.15446/dyna.v91n231.110842.

ACS

(1)
Sousa, L. V. de; da Silva, R. R.; Pires de Souza, M. V.; Carvalho Maia de Queiroz, G.; Batista Clemente, M. I.; de Medeiros, J. F. Effects of saline and water stress on sweet sorghum. DYNA 2024, 91, 69-75.

APA

Sousa, L. V. de, da Silva, R. R., Pires de Souza, M. V., Carvalho Maia de Queiroz, G., Batista Clemente, M. I. y de Medeiros, J. F. (2024). Effects of saline and water stress on sweet sorghum. DYNA, 91(231), 69–75. https://doi.org/10.15446/dyna.v91n231.110842

ABNT

SOUSA, L. V. de; DA SILVA, R. R.; PIRES DE SOUZA, M. V.; CARVALHO MAIA DE QUEIROZ, G.; BATISTA CLEMENTE, M. I.; DE MEDEIROS, J. F. Effects of saline and water stress on sweet sorghum. DYNA, [S. l.], v. 91, n. 231, p. 69–75, 2024. DOI: 10.15446/dyna.v91n231.110842. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/110842. Acesso em: 17 jul. 2024.

Chicago

Sousa, Leonardo Vieira de, Rodrigo Rafael da Silva, Maria Vanessa Pires de Souza, Gabriela Carvalho Maia de Queiroz, Maria Isabela Batista Clemente, y José Francismar de Medeiros. 2024. «Effects of saline and water stress on sweet sorghum». DYNA 91 (231):69-75. https://doi.org/10.15446/dyna.v91n231.110842.

Harvard

Sousa, L. V. de, da Silva, R. R., Pires de Souza, M. V., Carvalho Maia de Queiroz, G., Batista Clemente, M. I. y de Medeiros, J. F. (2024) «Effects of saline and water stress on sweet sorghum», DYNA, 91(231), pp. 69–75. doi: 10.15446/dyna.v91n231.110842.

MLA

Sousa, L. V. de, R. R. da Silva, M. V. Pires de Souza, G. Carvalho Maia de Queiroz, M. I. Batista Clemente, y J. F. de Medeiros. «Effects of saline and water stress on sweet sorghum». DYNA, vol. 91, n.º 231, enero de 2024, pp. 69-75, doi:10.15446/dyna.v91n231.110842.

Turabian

Sousa, Leonardo Vieira de, Rodrigo Rafael da Silva, Maria Vanessa Pires de Souza, Gabriela Carvalho Maia de Queiroz, Maria Isabela Batista Clemente, y José Francismar de Medeiros. «Effects of saline and water stress on sweet sorghum». DYNA 91, no. 231 (enero 24, 2024): 69–75. Accedido julio 17, 2024. https://revistas.unal.edu.co/index.php/dyna/article/view/110842.

Vancouver

1.
Sousa LV de, da Silva RR, Pires de Souza MV, Carvalho Maia de Queiroz G, Batista Clemente MI, de Medeiros JF. Effects of saline and water stress on sweet sorghum. DYNA [Internet]. 24 de enero de 2024 [citado 17 de julio de 2024];91(231):69-75. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/110842

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

168

Descargas

Los datos de descargas todavía no están disponibles.