Key flexibility quantification parameters.  Source: The Authors.

Publicado

2024-02-15

Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources

Cuantificación y análisis de la flexibilidad en una red de distribución de energía eléctrica con penetración de fuentes renovables no convencionales

DOI:

https://doi.org/10.15446/dyna.v91n231.110974

Palabras clave:

flexibility; power distribution networks; renewable energy sources; electrical energy storage systems (en)
flexibilidad; redes de distribución de energía eléctrica; fuentes de energía renovable; sistemas de almacenamiento de energía eléctrica. (es)

Descargas

Autores/as

This work shows the quantification of the flexibility in power distribution systems in the scenario in which non-conventional renewable sources are connected to it. From a set of metrics available in the literature, one is selected based on its applicability to operational and distribution system planning scenarios. The theoretical foundation and detail of its computational implementation is shown. On the basis of this, its calculation is addressed for a distribution system in which non-conventional renewable sources and storage systems are present. From the results it is possible to identify quantifiable characteristics of flexibility to the variation in the operation of this type of systems.

Este trabajo muestra la cuantificación de la flexibilidad en sistemas de distribución de energía eléctrica en el escenario en el cual se tienen fuentes renovables no convencionales conectados al mismo. A partir de un conjunto de métricas disponibles en la literatura, se selecciona una basada en su aplicabilidad a escenarios operativos y de planeación de sistemas de distribución. Se muestra el fundamento teórico y el detalle de su implementación computacional. Con base en esta, se aborda su cálculo para el caso de un sistema de distribución en el cual se tiene presencia de fuentes renovables no convencionales y sistemas de almacenamiento. A partir de los resultados es posible identificar características cuantificables de la flexibilidad ante la variación en la operación de este tipo de sistemas.

Referencias

Modi, A., Bühler, F., Andreasen, J.G., and Haglind, F., A review of solar energy-based heat and power generation systems, Renewable and Sustainable Energy Reviews, 67, pp. 1047–1064, 2017. DOI: https://doi.org/10.1016/j.rser.2016.09.075 DOI: https://doi.org/10.1016/j.rser.2016.09.075

Jha, S.K., Bilalovic, J., Jha, A., Patel, N., and Zhang, H., Renewable energy: present research and future scope of artificial intelligence, Renewable and Sustainable Energy Reviews, 77(May), pp. 297–317, 2017. DOI: https://doi.org/10.1016/j.rser.2017.04.018 DOI: https://doi.org/10.1016/j.rser.2017.04.018

Mohandes, B., Moursi, M.S.E., Hatziargyriou, N., and Khatib, S.E., A review of power system flexibility with high penetration of renewables, IEEE Transactions on Power Systems, 34(4), pp. 3140–3155, 2019. DOI: https://doi.org/10.1109/TPWRS.2019.2897727 DOI: https://doi.org/10.1109/TPWRS.2019.2897727

Raimi, D., Campbell, E., Newell, R., Prest, B., Villanueva, S. and Wingenroth, J., Global Energy Outlook 2022: turning points and tension in the energy transition a global energy outlook 2022: turning points and tension in the energy transition, N.A., 2022. [Online]. Available at: https://www.rff.org/publications/reports/global-energy-outlook-2022/

Bird, L., Cochran, J., and Wang, X., Wind and solar energy curtailment: experience and practices in the United States, National Renewable Energy Laboratory (NREL) (March), 2014, 58P, [Online]. Available at: http://www.osti.gov/servlets/purl/1126842/ DOI: https://doi.org/10.2172/1126842

Equipo Analitica XM ESP, “Pydataxm API XM.” GitHub, Inc., Medellin, 2022. [Online]. Available at: https://github.com/EquipoAnaliticaXM/API_XM

Eurelectric, Recommendations on the use of flexibility in distribution networks, (April), pp. 1–14, 2020, [Online]. Available at: https://www.eurelectric.org/media/4410/recommendations-on-the-use-of-flexibility-in-distribution-networks_proof-h-86B1B173.pdf

Papalexopoulos, A., Hansen, C., Frowd, R., Tuohy, A., and Lannoye, E., Impact of the transmission grid on the operational system flexibility, in 2016 Power Systems Computation Conference (PSCC), Genoa, Italy: IEEE, Jun. 2016, pp. 1–10. https://doi.org/10.1109/PSCC.2016.7541027. DOI: https://doi.org/10.1109/PSCC.2016.7541027

Abdin, I.F., and Zio, E., An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production, Applied Energy, 222(April), pp. 898–914, 2018. DOI: https://doi.org/10.1016/j.apenergy.2018.04.009. DOI: https://doi.org/10.1016/j.apenergy.2018.04.009

Nosair, H., Member, S., Bouffard, F., and Member, S., Flexibility envelopes for power system operational planning, IEEE Transactions on Sustainable Energy, 6(3), pp. 800–809, 2015. DOI: https://doi.org/10.1109/TSTE.2015.2410760. DOI: https://doi.org/10.1109/TSTE.2015.2410760

Grid Modernization Laboratory Consortium, Grid Modernization: Metrics Analysis (GMLC1.1), 4(May), 2017. DOI: https://doi.org/10.13140/RG.2.2.31320.39681.

Hsieh, E., and Anderson, R., Grid flexibility: the quiet revolution, Electricity Journal, 30(2), pp. 1–8, 2017. DOI: https://doi.org/10.1016/j.tej.2017.01.009 DOI: https://doi.org/10.1016/j.tej.2017.01.009

North American Electric Reliability Corporation., Flexibility requirements and metrics for variable generation: implications for system planning studies, (NERC), North American Electric Reliability Corporation, Village Blvd, August, 2010. [Online]. Available at: https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/IVGTF_Task_1_4_Final.pdf

Liu, X., Research on flexibility evaluation method of distribution system based on renewable energy and electric vehicles, IEEE Access, 8, pp. 109249–109265, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3000685 DOI: https://doi.org/10.1109/ACCESS.2020.3000685

Gonzalez-Salazar, M.A., Kirsten, T., and Prchlik, L., Review of the operational fl exibility and emissions of gas- and coal- fi red power plants in a future with growing renewables, Renewable and Sustainable Energy Reviews, 82(July), pp. 1497–1513, 2018. DOI: https://doi.org/10.1016/j.rser.2017.05.278. DOI: https://doi.org/10.1016/j.rser.2017.05.278

CREG, Medidas para la promocion de la competencia en el mercado de electricidad mayorista, 2010, 33P, [Online]. Available at: https://acolgen.org.co/portfolio/medidas-para-la-promocion-de-la-competencia-en-el-mercado-de-electricidad-mayorista

Kondziella, H., and Bruckner, T., Flexibility requirements of renewable energy-based electricity systems - A review of research results and methodologies, Renewable and Sustainable Energy Reviews, 53, pp. 10–22, 2016. DOI: https://doi.org/10.1016/j.rser.2015.07.199. DOI: https://doi.org/10.1016/j.rser.2015.07.199

Lannoye, E., Flynn, D., and O’Malley, M., Power system flexibility assessment State of the art, IEEE Power and Energy Society General Meeting, 2012. DOI: https://doi.org/10.1109/PESGM.2012.6345375.

Lannoye, E., Flynn, D., and O’Malley, M., Power system flexibility assessment State of the art, IEEE Power and Energy Society General Meeting, 2012. DOI: https://doi.org/10.1109/PESGM.2012.6345375. DOI: https://doi.org/10.1109/PESGM.2012.6345375

Kinoshita, S., Yamaguchi, N., Sato, F., and Ohtani, S., Impact of demand response price signal on battery state of charge management at office buildings, in: SEST 2021 - 4th International Conference on Smart Energy Systems and Technologies, 2021. DOI: https://doi.org/10.1109/SEST50973.2021.9543140. DOI: https://doi.org/10.1109/SEST50973.2021.9543140

Cao, Y. et al., Hydrogen production using solar energy and injection into a solid oxide fuel cell for CO2 emission reduction; Thermoeconomic assessment and tri-objective optimization, Sustainable Energy Technologies and Assessments, 50(November), art. 101767, 2022. DOI: https://doi.org/10.1016/j.seta.2021.101767. DOI: https://doi.org/10.1016/j.seta.2021.101767

Thurner, L. et al., Pandapower — An Open-Source Python tool for convenient modeling, analysis, and optimization of electric power systems, IEEE Transactions on Power Systems, 33(6), pp. 6510–6521, 2018. DOI: https://doi.org/10.1109/TPWRS.2018.2829021. DOI: https://doi.org/10.1109/TPWRS.2018.2829021

Lannoye, E., Flynn, D., and O’Malley, M., Evaluation of power system flexibility, IEEE Transactions on Power Systems, 27(2), pp. 922–931, 2012. DOI: https://doi.org/10.1109/TPWRS.2011.2177280. DOI: https://doi.org/10.1109/TPWRS.2011.2177280

Thatte A.A., and Xie, L., A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch, IEEE Transactions on Power Systems, 31(5), pp. 3437–3446, 2016. DOI: https://doi.org/10.1109/TPWRS.2015.2495118. DOI: https://doi.org/10.1109/TPWRS.2015.2495118

Ma, J., Silva, V., Belhomme, R., Kirschen, D.S., and Ochoa, L.F., Exploring the use of flexibility indices in low carbon power systems, IEEE PES Innovative Smart Grid Technologies Conference Europe (2), pp. 1–5, 2012. DOI: https://doi.org/10.1109/ISGTEurope.2012.6465757. DOI: https://doi.org/10.1109/ISGTEurope.2012.6465757

Makarov, Y.V., Etingov, P., Huang, Z., Ma, J., Chakrabarti, B., Subbarao, K., Loutan, C., and Guttromson, R., Integration of wind generation and load forecast uncertainties into power grid operations. in: Transmission and Distribution Conference and Exposition, 2010, pp. 1-8. DOI: https://doi.org/10.1109/TDC.2010.5484201 DOI: https://doi.org/10.2172/985583

Li, H., Wang, Z., Hong, T. and Piette, M.A., Energy flexibility of residential buildings: a systematic review of characterization and quantification methods and applications, Advances in Applied Energy, 3(July), art. 100054, 2021. DOI: https://doi.org/10.1016/j.adapen.2021.100054. DOI: https://doi.org/10.1016/j.adapen.2021.100054

Mills, A., and Seel, J., Flexibility inventory for western resource planners, Berkeley National Laboratory, 2015. [Online]. Available at: https://eta-publications.lbl.gov/sites/default/files/lbnl-1003750.pdf

Guo, Z., Zheng, Y., and Li, G., Power system flexibility quantitative evaluation based on improved universal generating function method: a case study of Zhangjiakou, Energy, 205, art. 117963, 2020. DOI: https://doi.org/10.1016/j.energy.2020.117963. DOI: https://doi.org/10.1016/j.energy.2020.117963

Cómo citar

IEEE

[1]
J. P. Suarique-Agudelo y J. G. Herrera-Murcia, «Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources», DYNA, vol. 91, n.º 231, pp. 76–85, ene. 2024.

ACM

[1]
Suarique-Agudelo , J.P. y Herrera-Murcia, J.G. 2024. Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources. DYNA. 91, 231 (ene. 2024), 76–85. DOI:https://doi.org/10.15446/dyna.v91n231.110974.

ACS

(1)
Suarique-Agudelo , J. P.; Herrera-Murcia, J. G. Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources. DYNA 2024, 91, 76-85.

APA

Suarique-Agudelo , J. P. y Herrera-Murcia, J. G. (2024). Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources. DYNA, 91(231), 76–85. https://doi.org/10.15446/dyna.v91n231.110974

ABNT

SUARIQUE-AGUDELO , J. P.; HERRERA-MURCIA, J. G. Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources. DYNA, [S. l.], v. 91, n. 231, p. 76–85, 2024. DOI: 10.15446/dyna.v91n231.110974. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/110974. Acesso em: 14 jul. 2024.

Chicago

Suarique-Agudelo , Juan Pablo, y Javier Gustavo Herrera-Murcia. 2024. «Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources». DYNA 91 (231):76-85. https://doi.org/10.15446/dyna.v91n231.110974.

Harvard

Suarique-Agudelo , J. P. y Herrera-Murcia, J. G. (2024) «Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources», DYNA, 91(231), pp. 76–85. doi: 10.15446/dyna.v91n231.110974.

MLA

Suarique-Agudelo , J. P., y J. G. Herrera-Murcia. «Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources». DYNA, vol. 91, n.º 231, enero de 2024, pp. 76-85, doi:10.15446/dyna.v91n231.110974.

Turabian

Suarique-Agudelo , Juan Pablo, y Javier Gustavo Herrera-Murcia. «Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources». DYNA 91, no. 231 (enero 24, 2024): 76–85. Accedido julio 14, 2024. https://revistas.unal.edu.co/index.php/dyna/article/view/110974.

Vancouver

1.
Suarique-Agudelo JP, Herrera-Murcia JG. Quantification and analysis of flexibility in a power distribution network with penetration of non-conventional renewable sources. DYNA [Internet]. 24 de enero de 2024 [citado 14 de julio de 2024];91(231):76-85. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/110974

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

88

Descargas

Los datos de descargas todavía no están disponibles.