Untreated and treated syrup

Publicado

2024-08-01

Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues

Optimización del proceso de clarificación enzimática de jarabes glucosados a partir de residuos agroindustriales

DOI:

https://doi.org/10.15446/dyna.v91n233.112080

Palabras clave:

enzymatic hydrolysis, glucose syrup, pectin, polygalacturonase, enzymatic clarification (en)
hidrólisis enzimática, jarabe glucosado, pectina, poligalacturonasa, clarificación enzimática (es)

Descargas

Autores/as

In this work, the application of pectinase enzymes to clarify glucose syrups produced from corn fiber was studied. The enzymatic activity and kinetic parameters of the pectinase enzyme used were quantified. A specific activity of 5,528 U/mg protein, a maximum rate of 19151 U/mL, and a Michaelis-Menten constant of 1,656 mg/mL were obtained. The syrup was prepared by hydrolyzing corn fiber at 50°C and 180 rpm, and a central composite design was performed for the clarification step to find the optimal conditions of enzyme-substrate ratio and agitation. The syrup was heated to a temperature of 50°C, and an enzyme substrate ratio between 2.5 to 4.5 U/mL of syrup and agitation, varying between 215 to 285 rpm, was applied. The conditions to maximize the clarification of corn fiber syrup were determined to be an enzyme substrate ratio of 3.716 U/mL syrup and agitation of 267 rpm. These conditions were validated by taking the syrup from clarity of 65.8% to 88.1%, demonstrating that the methodology used presents advantages in the syrup clarification process. A physicochemical characterization of the corn fiber used to prepare the syrups was carried out, which presented a content of 12.90%, 23.33%, 13.4%, and 0.36% of cellulose, hemicellulose, lignin and pectin, respectively.

En este trabajo se estudió la aplicación de enzimas pectinasas para clarificar jarabes de glucosa producidos a partir de fibra de maíz. Se cuantificó la actividad enzimática y los parámetros cinéticos de la enzima utilizada. Se obtuvo una actividad específica de 5.528 U/mg de proteína, una velocidad máxima de 19151 U/mL y una constante de Michaelis-Menten de 1.656 mg/mL. El jarabe se preparó hidrolizando fibra de maíz a 50°C y 180 rpm, y se realizó un diseño compuesto central para la etapa de clarificación con el fin de encontrar las condiciones óptimas de relación enzima-sustrato y agitación. El jarabe se calentó a una temperatura de 50°C, y se aplicó una proporción enzima-sustrato entre 2,5 y 4,5 U/mL de jarabe y una agitación que varió entre 215 y 285 rpm. Se determinó que las condiciones para maximizar la clarificación del jarabe de fibra de maíz eran una proporción de sustrato enzimático de 3,716 U/mL de jarabe y una agitación de 267 rpm. Estas condiciones se validaron llevando el jarabe de una claridad del 65,8% al 88,1%, demostrando que la metodología empleada presenta ventajas en el proceso de clarificación del jarabe. Se realizó una caracterización fisicoquímica de la fibra de maíz utilizada para preparar los jarabes, que presentó un contenido de 12,90%, 23,33%, 13,4% y 0,36% de celulosa, hemicelulosa, lignina y pectina, respectivamente.

Referencias

Peñaranda-González, L.V., Montenegro-Gómez, S.P., y Giraldo-Abad, P.A., Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental 8(2), pp. 141-50, 2017. DOI: https://doi.org/10.22490/21456453.2040

[2] González, A.F., y Flórez-Montes, C., Valorización de residuos de frutas para combustión y pirólisis. Revista Politécnica 15(28), pp. 42-53, 2019. DOI: https://doi.org/10.33571/rpolitec.v15n28a4.

[3] Shams-Forruque, A., Rafa, N., Irfan-Anjum-Badruddin, M. M., Inayat, A., Sawkat-Ali, Md., Farrok, O., and Yunus-Khan, T.M., Biohydrogen production from biomass sources: metabolic pathways and economic analysis. Frontiers in Energy Research 9, art. 3878, 2021. DOI: https://doi.org/10.3389/fenrg.2021.753878

[4] Zhang, L., Guoyun, X., Kun, Y., Han, Y., and Xiaochang W., Furfural production from Biomass–Derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Industrial Crops and Products 98, pp. 68-75, 2017. DOI: https://doi.org/10.1016/j.indcrop.2017.01.014.

[5] de Barros, R.D.R.O, Becarelli, R., Alves de Oliveira, LT., and Bon, E.P.S., Triticum spelta straw hydrothermal pretreatment for the production of glucose syrups via enzymatic hydrolysis. Biochemical Engineering Journal 151, art. 107340, 2019. DOI: https://doi.org/10.1016/j.bej.2019.107340.

[6] Pihlajaniemi, V., Outi, M., Koitto, T., Nikinmaa, M., Heiniö, R.L., Sorsamäki, L., Siika-aho, M., and Nordlund, M., Production of syrup rich in arabinoxylan oligomers and antioxidants from wheat bran by alkaline pretreatment and enzymatic hydrolysis, and applicability in baking. Journal of Cereal Science 95, art. 103043, 2020. DOI: https://doi.org/10.1016/j.jcs.2020.103043.

[7] Ruiz-Colorado, A.A., y Bueno-Zabala, K.A. Proceso para obtener jarabes azucarados a partir de residuos agroindustriales. World Intellectual Property Organization WO2017212405A1, filed 6 de junio de 2017, and issued 14 de diciembre de 2017 ¨[online]. Available at: https://patents.google.com/patent/WO2017212405A1/es.

[8] Ruiz-Colorado, A.A., Medina, V.I., Mejia, M.C., Hoyos, L.M., Perez, Y. M., Herrera, S.N. y Bohorquez, C., Procedimiento para la produccion de jarabe azucarado por degradación de materiales

Amilaceos y Lignocelulosicos de la planta de banano. CO6100124A1, November 30, 2009. [online]. Available at: https://patents.google.com/patent/CO6100124A1

[9] Belitz, H.D., Grosch, W., and Schieberle, P., eds., Sugars, sugar alcohols and honey. In Food ChemistrySpringer, Berlin, Heidelberg, 2009, pp. 862-891. DOI: https://doi.org/10.1007/978-3-540-69934-7_20.

[10] BeMiller, J.N., 19 - Carbohydrate and noncarbohydrate sweeteners. In Carbohydrate Chemistry for Food Scientists (3rd Ed.), James N. BeMiller, AACC International Press, 2019, pp. 371-399. DOI: https://doi.org/10.1016/B978-0-12-812069-9.00019-4.

[11] Hull, P., History of glucose syrups. In Glucose Syrups, John Wiley & Sons, Ltd, 2010, pp. 1-7. DOI: https://doi.org/10.1002/9781444314748.ch1.

[12] Almandoz, C., Pagliero, C., Ochoa, A., and Marchese, J., Corn syrup clarification by microfiltration with ceramic membranes. Journal of Membrane Science 363(1), pp. 87-95, 2010. DOI: https://doi.org/10.1016/j.memsci.2010.07.017.

[13] Crema-Cruz, L.C., Darros-Barbosa, R., and da Cruz, P.A., Effects of temperature and cationic surfactant on the clarification of sugar syrup by air dissolved flotation. International Journal of Advanced Engineering Research and Science. [online]. 6(6), 2019. Available at: https://journal-repository.com/index.php/ijaers/article/view/659.

[14] Djalal, M., Bastian, F., Hidayat, H.S., and Laga, A., Glucose syrup clarification with a different form of activated charcoal. IOP Conference Series: Earth and Environmental Science 343, art. 012073, 2019. DOI: https://doi.org/10.1088/1755-1315/343/1/012073.

[15] Domínguez, O., Cruz, G., González, G., y Rentería, A., Alternativas para la clarificación del jarabe de glucosa obtenido por hidrólisis enzimática del almidón. Ingeniería e Investigación. [en línea]. 55, pp. 8-21, 2004. Disponible en: https://repositorio.unal.edu.co/handle/unal/28649

[16] Li, W., Guo-Qing, L., Huang, P., Li, K., Lu, H., Hang, F., Zhang, Y. et al., Performance of ceramic microfiltration membranes for treating carbonated and filtered remelt syrup in sugar refinery. Journal of Food Engineering 170, pp. 41-49, 2016. DOI: https://doi.org/10.1016/j.jfoodeng.2015.09.012.

[17] Singh, R.S., Chauhan, K., and Singh, R.P., Enzymatic approaches for the synthesis of high fructose syrup. In Plant Biotechnology: recent advancements and developments, editado por Kumar-Gahlawat, S., Kumar-Salar, R., Siwach, P., Singh-Duhan, J., Kumar, S., and Kaur, P., Eds., Springer, Singapore, 2017, pp. 189-211. DOI: https://doi.org/10.1007/978-981-10-4732-9_10.

[18] Kwan, T.H., Lun-Ong, K., Md-Haque, A., Tang, W., Kulkarni, S. and Sze-Ki-Lin, C., High fructose syrup production from mixed food and beverage waste hydrolysate at laboratory and pilot scales. Food and Bioproducts Processing 111, pp. 141-52, 2018. DOI: https://doi.org/10.1016/j.fbp.2018.08.001.

[19] Montañez-Soto, J.L., González, J., Bernardino-Nicanor, A. and Ramos-Ramírez, E., Enzymatic production of high fructose syrup from Agave tequilana fructans and its physicochemical characterization. African Journal of Biotechnology. 10, pp. 19137-19143, 2011. DOI: https://doi.org/10.5897/AJB11.2704.

[20] Bonnin, E., and Pelloux, J., Pectin degrading enzymes. In Pectin: technological and physiological properties. Kontogiorgos, V., Ed., Springer International Publishing, Cham, 2020, pp. 37-60. DOI: https://doi.org/10.1007/978-3-030-53421-9_3.

[21] Ravve, A., Naturally occurring polymers., In Principles of Polymer Chemistry. Ravve, A., Ed., Springer, New York, NY, USA, 2012, pp. 537-565. DOI: https://doi.org/10.1007/978-1-4614-2212-9_8.

[22] Ropartz, D., and Ralet, M.C., Pectin structure., In Pectin: technological and physiological properties. Kontogiorgos, V., Ed., Springer International Publishing, Cham, 2020, pp. 17-36. DOI: https://doi.org/10.1007/978-3-030-53421-9_2.

[23] Van-Buren, J.P., Chapter 1 - Function of pectin in plant tissue structure and firmness., In The Chemistry and Technology of Pectin, Reginald, W., Ed., Food Science and Technology. Academic Press, San Diego, USA, 1991, pp. 1-22. DOI: https://doi.org/10.1016/B978-0-08-092644-5.50006-6.

[24] Cerreti, M., Kantorova, K., Esti, M., Rosenberg, M. and Rebroš, M., Immobilisation of pectinases into PVA gel for fruit juice application. International Journal of Food Science & Technology 52, pp. 531-539, 2017. DOI: https://doi.org/10.1111/ijfs.13309. [25] Hosseini, S.S., Khodaiyan, F., Mohammad-Mousavi, S. and Zahra-Azimi, S., Clarification of the pomegranate juice in a bioreactor packed by pectinase enzymes immobilized on the glass bead activated with polyaldehyde polysaccharides. LWT 137, art. 110500., 2021. DOI: https://doi.org/10.1016/j.lwt.2020.110500.

[26] Kharazmi, S., Taheri-Kafrani, A., and Soozanipour, A., Efficient immobilization of pectinase on trichlorotriazine-functionalized polyethylene glycol-grafted magnetic nanoparticles: a stable and robust nanobiocatalyst for fruit juice clarification. Food Chemistry. 325, art. 126890, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.126890.

[27] Ladeira-Ázar, R.I.S., da Luz-Morales, A., Maitan-Alfenas, M.P., Falkoski, D.L., Ferreira-Alfenas, R. and Guimarães, V.M., Apple juice clarification by a purified polygalacturonase from calonectria pteridis. Food and Bioproducts Processing 119, pp. 238-245, 2020. DOI: https://doi.org/10.1016/j.fbp.2019.11.013.

[28] Ahmed, A., and Sohail, M., Characterization of pectinase from geotrichum candidum AA15 and its potential application in orange juice clarification. Journal of King Saud University - Science 32(1), pp. 955-961, 2020. DOI: https://doi.org/10.1016/j.jksus.2019.07.002.

[29] Pagnonceli, J., Rasbold, L.M., Rocha, G.B., Silva, J.L.C., Kadowaki, M.K., Simão, R.C.G., and Maller, A., Biotechnological potential of an exo-polygalacturonase of the new strain penicillium janthinellum VI2R3M: biochemical characterization and clarification of fruit juices. Journal of Applied Microbiology 127(6), pp. 1706-1715, 2019. DOI: https://doi.org/10.1111/jam.14426.

[30] Lu, X., Lin, J., Wang, C., Du, X. and Cai, J., Purification and characterization of exo-polygalacturonase from zygoascus hellenicus V25 and its potential application in fruit juice clarification. Food Science and Biotechnology 25(5), pp. 1379-1385 2016. DOI: https://doi.org/10.1007/s10068-016-0215-3.

[31] Ninga, K.A., Carly-Desobgo, Z.S., De, S., and Jong-Nso, E., Pectinase hydrolysis of guava pulp: effect on the physicochemical characteristics of its juice. Heliyon 7(10), art. 08141, 2021. DOI: https://doi.org/10.1016/j.heliyon.2021.e08141.

[32] Gáspár, M., Kálmán, G., and Réczey, K., Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochemistry 42(7), pp. 1135-1139, 2007. DOI: https://doi.org/10.1016/j.procbio.2007.04.003.

[33] Gáspár, M., Juhász, T., Szengyel, Zs., and Réczey, K., Fractionation and utilisation of corn fibre carbohydrates. Process Biochemistry, 40(3), pp. 1183-1188, 2005. DOI: https://doi.org/10.1016/j.procbio.2004.04.004.

[34] Kálmán, G., Recseg, K., Gaspar, M., and Réczey, K., Novel approach of corn fiber utilization. Applied Biochemistry and Biotechnology, 131, pp. 738-750, 2006. DOI: https://doi.org/10.1385/ABAB:131:1:738.

[35] Kaur, D., Singla, G., Singh, U., and Krishania, M., Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications 1, art. 100011, 2020. DOI: https://doi.org/10.1016/j.carpta.2020.100011.

[36] Zhang, B., Zhan, B., and Bao, J., Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, art. 113791, 2021. DOI: https://doi.org/10.1016/j.indcrop.2021.113791.

[37] Sluiter, A., Determination of ash in biomass. Laboratory Analytical Procedure (LAP). Issue Date: 7/17/2005. Technical Report, 2008, 8.

[38] Sluiter, A., Determination of extractives in biomass. Laboratory Analytical Procedure (LAP). Issue Date 7/17/2005. Technical Report, 2008, 12.

[39] Sluiter, A., Determination of total solids in biomass and total dissolved solids in liquid process samples. Laboratory Analytical Procedure (LAP). Technical Report, 2008, 9.

[40] Sluiter, A., and Sluiter, J., Determination of starch in solid biomass samples by HPLC. Laboratory Analytical Procedure (LAP). Issue Date: 07/17/2005. Technical Report, 2008, 10.

[41] Sluiter, A, Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D., Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Issue Date 4/25/2008. Technical Report, 2008, 18.

[42] Secretaria de Comercio y Fomento Industrial. Frutas y derivados- determinación de pectina (NMX-F-347-S-1980). 1980.

[43] Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., and Templeton, D., Preparation of samples for compositional analysis. Laboratory Analytical Procedure (LAP). Issue Date 08/08/2008. Technical Report, 2008, 12.

[44] Li, Q., Coffman, A.M., and Ju, L.K., Development of reproducible assays for polygalacturonase and pectinase. Enzyme and Microbial Technology 72, pp. 42-48, 2015. DOI: https://doi.org/10.1016/j.enzmictec.2015.02.006.

[45] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1), pp. 248-254, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90527-3.

[46] Dalagnol, L.M.G., Silveira, V C.C., da Silva, H.B., Manfroi, V., and Rodrigues, R.C., Improvement of pectinase, xylanase and cellulase activities by ultrasound: effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochemistry, 61, pp. 80-87, 2017. DOI: https://doi.org/10.1016/j.procbio.2017.06.029.

Cómo citar

IEEE

[1]
A. Morales-González, J. C. Acosta-Pavas, y A. A. Ruiz-Colorado, «Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues», DYNA, vol. 91, n.º 233, pp. 9–16, ago. 2024.

ACM

[1]
Morales-González, A., Acosta-Pavas, J.C. y Ruiz-Colorado, A.A. 2024. Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues. DYNA. 91, 233 (ago. 2024), 9–16. DOI:https://doi.org/10.15446/dyna.v91n233.112080.

ACS

(1)
Morales-González, A.; Acosta-Pavas, J. C.; Ruiz-Colorado, A. A. Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues. DYNA 2024, 91, 9-16.

APA

Morales-González, A., Acosta-Pavas, J. C. y Ruiz-Colorado, A. A. (2024). Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues. DYNA, 91(233), 9–16. https://doi.org/10.15446/dyna.v91n233.112080

ABNT

MORALES-GONZÁLEZ, A.; ACOSTA-PAVAS, J. C.; RUIZ-COLORADO, A. A. Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues. DYNA, [S. l.], v. 91, n. 233, p. 9–16, 2024. DOI: 10.15446/dyna.v91n233.112080. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/112080. Acesso em: 9 sep. 2024.

Chicago

Morales-González, Alejandro, Juan Camilo Acosta-Pavas, y Angela Adriana Ruiz-Colorado. 2024. «Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues». DYNA 91 (233):9-16. https://doi.org/10.15446/dyna.v91n233.112080.

Harvard

Morales-González, A., Acosta-Pavas, J. C. y Ruiz-Colorado, A. A. (2024) «Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues», DYNA, 91(233), pp. 9–16. doi: 10.15446/dyna.v91n233.112080.

MLA

Morales-González, A., J. C. Acosta-Pavas, y A. A. Ruiz-Colorado. «Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues». DYNA, vol. 91, n.º 233, agosto de 2024, pp. 9-16, doi:10.15446/dyna.v91n233.112080.

Turabian

Morales-González, Alejandro, Juan Camilo Acosta-Pavas, y Angela Adriana Ruiz-Colorado. «Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues». DYNA 91, no. 233 (agosto 1, 2024): 9–16. Accedido septiembre 9, 2024. https://revistas.unal.edu.co/index.php/dyna/article/view/112080.

Vancouver

1.
Morales-González A, Acosta-Pavas JC, Ruiz-Colorado AA. Optimization of the enzymatic clarification process of glucose syrups derived from agro-industrial residues. DYNA [Internet]. 1 de agosto de 2024 [citado 9 de septiembre de 2024];91(233):9-16. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/112080

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

61

Descargas

Los datos de descargas todavía no están disponibles.