Construcción del modelo físico: a) protección de la caja metálica; b) colocación la subrasante; c) compactación de la primera capa de subrasante; d) compactación subrasante; e) colocación de la geomalla; f) colocación del material de mejoramiento.

Publicado

2024-03-15

Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica

Performance of an unpaved roads reinforced with geogrid: construction of a physical model in laboratory and numerical validation

DOI:

https://doi.org/10.15446/dyna.v91n231.112274

Palabras clave:

geosintéticos; vía no pavimentada; refuerzo (es)
geosynthetics; unpaved; reinforcement (en)

Descargas

Autores/as

Este estudio evaluó el comportamiento mecánico de un modelo físico laboratorial de una vía no pavimentada reforzada con una geomalla biaxial GB. Para tal fin, se compactaron 0.15 m de material de mejoramiento y 0.20 m de subrasante en una caja cuadrada de 0.35 m. Se realizaron ensayos con y sin refuerzo, mediante la aplicación de 10000 ciclos de carga dinámica en una maquina universal. Se utilizo una frecuencia de 2.5 Hz y presión de 560 kPa mediante una placa circular de 0.10 m de diámetro, simulando la circulación de una llanta de un eje rueda simple. La validación numérica vía Métodos de los Elementos Finitos (MEF) definió parámetros usando el modelo Hardening Soil. Como gran conclusión, se pudo evidenciar que el refuerzo con una geomalla reduce aproximadamente 45% la magnitud del ahuellamiento, según el modelo, debido a que la geomalla reduce la concentración de esfuerzos cortantes (τ relativo) disminuyendo la deformación plástica.

This study evaluated the mechanical behavior of a physical laboratory model of an unpaved route reinforced with a BG biaxial geogrid. To this end, 0.15 m of improvement material and 0.20 m of subgrade were compacted in a square box of 0.35 m. Tests were carried out with and without reinforcement, by applying 10000 dynamic load cycles on a universal machine. A frequency of 2.5 Hz and pressure of 560 kPa was used by a circular plate of 0.10 m in diameter, simulating the circulation of a tire of a simple wheel axis. The numerical validation for the Finite Elements Methods (MEF) defined parameters using the Hardening Soil model. As a great conclusion, it could be evidenced that reinforcement with a geogrid reduces approximately 45% the magnitude of the rutting, depending on the model, because the geogrid reduces the concentration of cutting stresses (relative τ) decreasing plastic deformation.

Referencias

Ministerio de Transportes., Anuario Nacional de Transporte, Colombia, Transporte en cifras 2021, Colombia, 2021, 123 P.

INVIAS Instituto Nacional de Vías. Estado de la red vial [en Línea], Estado de la red vial no pavimentada, Bogotá, Colombia, 2023. [Consulta, 18 de noviembre de 2023]. Disponible en: https://www.invias.gov.co/index.php/informacion-institucional/2-principal/57-estado-de-la-red-vial.

Jones, D., and Surdahl, R., New procedure for selecting chemical treatments for unpaved roads. Transportation Research Record: Journal of the Transportation Research Board, 2433, pp. 87–99, 2014. DOI: https://doi.org/10.3141/2433-10 DOI: https://doi.org/10.3141/2433-10

Bushman, W., Freeman, T., and Hoppe, E., Stabilization techniques for unpaved roads. Transportation Research Record: Journal of the Transportation Research Board, 1936(1), pp. 28–33, 2005. DOI: https://doi.org/10.1177/0361198105193600104 DOI: https://doi.org/10.1177/0361198105193600104

Keller, G., Application of geosynthetics on low-volume roads. Transportation Geotechnics, 8, pp. 119–131, 2016. DOI: https://doi.org/10.1016/j.trgeo.2016.04.002 DOI: https://doi.org/10.1016/j.trgeo.2016.04.002

Latha, G., Nair, A., and Hemalatha, M., Performance of geosynthetics in unpaved roads. International Journal of Geotechnical Engineering, 4(3), pp. 337–349, 2010. DOI: https://doi.org/10.3328/IJGE.2010.04.03.337-349 DOI: https://doi.org/10.3328/IJGE.2010.04.03.337-349

Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman, S.M., and Brönnimann, R., Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotextiles and Geomembranes, 24(1), pp. 21–37, 2006. DOI: https://doi.org/10.1016/j.geotexmem.2005.06.002 DOI: https://doi.org/10.1016/j.geotexmem.2005.06.002

Haghsheno, H., and Arabani, M., The effect of primary stabilizers for stabilization/solidification of oil-polluted soils–a review. Environmental Technology Reviews, 12(1), pp. 337–358, 2023. DOI: https://doi.org/10.1080/21622515.2023.2215460 DOI: https://doi.org/10.1080/21622515.2023.2215460

Abdeldjouad, L., Asadi, A., Nahazanan, H., Huat, B., Dheyab, W., and Elkhebu, A., Effect of clay content on soil stabilization with alkaline activation. International Journal of Geosynthetics and Ground Engineering, 5 (1), pp. 1–8, 2019. DOI: https://doi.org/10.1007/s40891-019-0157-y DOI: https://doi.org/10.1007/s40891-019-0157-y

Behnood, A., Soil and clay stabilization with calcium- and non-calcium-based additives: a state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17, pp. 14–32, 2018. DOI: https://doi.org/10.1016/j.trgeo.2018.08.002 DOI: https://doi.org/10.1016/j.trgeo.2018.08.002

Gilazghi, S., Huang, J., Rezaeimalek, S., and Bin-Shafique, S., Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization. Engineering Geology, 211, pp. 171-178, 2016. DOI: https://doi.org/10.1016/j.enggeo.2016.07.007 DOI: https://doi.org/10.1016/j.enggeo.2016.07.007

Liu, Y., Xie, X., Zheng, L., and Li, J., Electroosmotic stabilization on soft soil: experimental studies and analytical models (A historical review). International Journal of Electrochemical Science, 13(9), pp. 9051–9068, 2018. DOI: https://doi.org/10.20964/2018.09.40 DOI: https://doi.org/10.20964/2018.09.40

Martin, L., Alizadeh, V., and Meegoda, J., Electro-osmosis treatment techniques and their effect on dewatering of soils, sediments, and sludge: a review. Soils and Foundations, 9(2), pp. 407–418, 2019. DOI: https://doi.org/10.1016/j.sandf.2018.12.015 DOI: https://doi.org/10.1016/j.sandf.2018.12.015

Kherad, M., Vakili, A., Selamat, M., Salimi, M., Farhadi, M., and Dezh, M., An experimental evaluation of electroosmosis treatment effect on the mechanical and chemical behavior of expansive soils. Arabian Journal of Geosciences, 13(6), pp. 1-12, 2020. DOI: https://doi.org/10.1007/s12517-020-5266-3 DOI: https://doi.org/10.1007/s12517-020-5266-3

Rondón-Quintana, H., Ruge-Cárdenas, J., and Zafra-Mejía, C., Natural asphalts in pavements: review. Sustainability, 15(3). pp. 1-22, 2023. DOI: https://doi.org/10.3390/su15032098 DOI: https://doi.org/10.3390/su15032098

Ghanizadeh, A., and Jahanshahi, F., A case study on potential use of stabilized mine overburden wastes as pavement materials. Transportation Infrastructure Geotechnology, pp. 1-35, 2023. https://doi.org/10.1007/s40515-023-00307-0 DOI: https://doi.org/10.1007/s40515-023-00307-0

Bastidas-Martinez, J.G., and Ruge, J.C., Structural evaluation of pavement thickness in Plain-concrete strip road. en: Congreso Internacional de Innovacion y Tendencias en Ingeniería, Conference Proceedings, 2022. DOI: https://doi.org/10.1109/CONIITI57704.2022.9953590 DOI: https://doi.org/10.1109/CONIITI57704.2022.9953590

Roesler, J.R., Cervantes, V.G., and Amirkhanian, A.N., Accelerated performance testing of concrete pavement with short slabs. International Journal of Pavement Engineering, 13(6), pp. 494–507, 2012. DOI: https://doi.org/10.1080/10298436.2011.575134 DOI: https://doi.org/10.1080/10298436.2011.575134

Salsilli, R., Wahr, C., Delgadillo, R., Huerta, J., and Sepúlveda, P., Field performance of concrete pavements with short slabs and design procedure calibrated for Chilean conditions. International Journal of Pavement Engineering, 16(4), pp. 363–379, 2015. DOI: https://doi.org/10.1080/10298436.2014.943129 DOI: https://doi.org/10.1080/10298436.2014.943129

Zornberg, J.G., Functions and applications of geosynthetics in roadways. Procedia Engineering, 189, pp. 298–306. 2017. DOI: https://doi.org/10.1016/j.proeng.2017.05.048 DOI: https://doi.org/10.1016/j.proeng.2017.05.048

Alimohammadi, H., Zheng, J., Schaefer, V.R., Siekmeier, J., and Velasquez, R., Evaluation of geogrid reinforcement of flexible pavement performance: a review of large-scale laboratory studies. Transportation Geotechnics. 27, art. 100471, 2021. DOI: https://doi.org/10.1016/j.trgeo.2020.100471 DOI: https://doi.org/10.1016/j.trgeo.2020.100471

Deb, K., Samadhiya, N.K., and Namdeo, J.B., Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay. Geotextiles and Geomembranes, 29(2), pp. 190–196, 2011. DOI: https://doi.org/10.1016/j.geotexmem.2010.06.004. DOI: https://doi.org/10.1016/j.geotexmem.2010.06.004

Das, B.M., Use of geogrid in the construction of rail roads. Innovative Infrastructure Solutions, 1(1), pp. 1–15, 2016. DOI: https://doi.org/10.1007/s41062-016-0017-8 DOI: https://doi.org/10.1007/s41062-016-0017-8

Gu, F., Luo, X., Luo, R., Lytton, R.L., Hajj, E.Y., and Siddharthan, R.V., Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test. Constr Build Mater, 122, pp. 214–230, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.081. DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.081

Qian, Y., Han, J., Pokharel, S.K., and Parsons, R.L., Performance of triangular aperture geogrid-reinforced base courses over weak subgrade under cyclic loading. Journal of Materials in Civil Engineering. 25(8), pp. 1013–1021, 2013. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0000577. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000577

Roodi, H., Zornberg, J.G., Aboelwafa, M.M., Phillips, J.R., Zheng, L., and Martinez. J., Soil-Geosynthetic interaction test to develop specifications for geosynthetic-stabilized roadways (FHWA 5-4829- 03-1) FHWA 5-4829-03-1, EE. UU, [online], 2017. [Consulted, November 18th of 2023]. Available at: http://library.ctr.utexas.edu/ctr-publications/5-4829-03-1.pdf

Rueda, E.J., Bastidas-Martínez, J.C., Ruge, J.C., Alayón, Y., and Olivos, J., Laboratory analysis of an asphalt mixture overlay reinforced with a biaxial geogrid. Coatings, 13(1), pp. 1-12, 2023. DOI: https://doi.org/10.3390/coatings13010099 DOI: https://doi.org/10.3390/coatings13010099

Leng, J., and Gabr, M.A., Characteristics of Geogrid-Reinforced Aggregate Under Cyclic Load, Transportation Research Record, 1786(1), pp. 29-35, 2002. DOI: https://doi.org/10.3141/1786-04. DOI: https://doi.org/10.3141/1786-04

Palmeira, E.M., and Antunes, L.G., Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotextiles and Geomembranes, 28(6), pp. 547–558, 2010. DOI: https://doi.org/10.1016/j.geotexmem.2010.03.002. DOI: https://doi.org/10.1016/j.geotexmem.2010.03.002

Mekkawy, M.M., White, D.J., Suleiman, M.T., and Jahren, C.T., Mechanically reinforced granular shoulders on soft subgrade: laboratory and full scale studies. Geotextiles and Geomembranes, 29(2), pp. 149–160, 2011. DOI: https://doi.org/10.1016/j.geotexmem.2010.10.006 DOI: https://doi.org/10.1016/j.geotexmem.2010.10.006

Góngora, I.A., and Palmeira, E.M., Influence of fill and geogrid characteristics on the performance of unpaved roads on weak subgrades. Geosynth Int, 19(2), pp. 191–199, 2012. DOI: https://doi.org/10.1680/gein.2012.19.2.191 DOI: https://doi.org/10.1680/gein.2012.19.2.191

Nair, A.M., and Latha, G.M., Repeated load tests on geosynthetic reinforced unpaved road sections. Geomechanics and Geoengineering, 11(2), pp. 95–103, 2016. DOI: https://doi.org/10.1080/17486025.2015.1029012 DOI: https://doi.org/10.1080/17486025.2015.1029012

Zadehmohamad, M., Luo, N., Abu-Farsakh, M., and Voyiadjis, G., Evaluating long-term benefits of geosynthetics in flexible pavements built over weak subgrades by finite element and Mechanistic-Empirical analyses. Geotextiles and Geomembranes, 50(3), pp. 455–469, 2022. DOI: https://doi.org/10.1016/j.geotexmem.2022.01.004 DOI: https://doi.org/10.1016/j.geotexmem.2022.01.004

Koerner, R.M., Designing with Geosynthetics, 1994.

Palmeira E.M., and Góngora, I.A.G., Assessing the influence of some soil–reinforcement interaction parameters on the performance of a low fill on compressible subgrade. Part I: fill performance and relevance of interaction parameters. International Journal of Geosynthetics and Ground Engineering, 2(1), pp. 455–469, 2016. DOI: https://doi.org/10.1007/s40891-015-0041-3 DOI: https://doi.org/10.1007/s40891-015-0041-3

Góngora, I.A.M., and Palmeira, E.M., Assessing the influence of soil-reinforcement interaction parameters on the performance of a low fill on compressible subgrade. Part II: influence of surface maintenance. International Journal of Geosynthetics and Ground Engineering, 2(1), pp. 1–12, 2016. DOI: https://doi.org/10.1007/s40891-015-0042-2 DOI: https://doi.org/10.1007/s40891-015-0042-2

Schanz, T., Vermeer P.A., and Bonnier P.G., The hardening soil model: formulation and verification. Beyond 2000 in Computational Geotechnics - 10 Years of Plaxis, 1, pp. 1–16, 2000.

Feleke, G.G., and Araya, A.A., Prediction of CBR using DPC for locate subgrade materials. International Conference on Transport and Road Research, 2016, pp. 1–25.

Narzary, B.K., and Ahamad, K.U., Estimating elastic modulus of California bearing ratio test sample using finite element model. Constr. Build Mater, 175, pp. 601–609, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.228 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.228

Marroquín, J.S.C., Maldonado, V.A.B., and Cano, C.E.H., Numerical simulation of the CBR test for subgrades in the city of Bogotá. in: 2022 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogota, Colombia, 2022, pp. 1-5. DOI: https://doi.org/10.1109/CONIITI57704.2022.9953599 DOI: https://doi.org/10.1109/CONIITI57704.2022.9953599

Jewell, R.A., Partners, B., and Milligan, G.W.E., Interaction between soil and geogrids. In polymer grid reinforcement. Thomas Telford Limited, 1, pp. 18–30, 1984.

Puppala, A.J. Saride, S., and Chomtid, S., Experimental and modeling studies of permanent strains of subgrade soils. Journal of Geotechnical and Geoenviromental Engineering, 135(10), pp. 1379–1389, 2009. DOI: https://doi.org/10.1061/ASCEGT.1943-5606.0000163 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000163

Qui, Y., Dennis, N.D., and Elliott, R.P., Design criteria for permanent deformation of subgrade soils in flexible pavements for low-volume roads. Soils and Foundations. 40, pp. 1–10, 2000. DOI: https://doi.org/10.3208/sandf.40.1

Cómo citar

IEEE

[1]
J. G. Bastidas-Martínez, C. E. Herrera-Cano, y H. J. Bautista-Tapias, «Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica», DYNA, vol. 91, n.º 231, pp. 153–162, ene. 2024.

ACM

[1]
Bastidas-Martínez, J.G., Herrera-Cano, C.E. y Bautista-Tapias, H.J. 2024. Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica. DYNA. 91, 231 (ene. 2024), 153–162. DOI:https://doi.org/10.15446/dyna.v91n231.112274.

ACS

(1)
Bastidas-Martínez, J. G.; Herrera-Cano, C. E.; Bautista-Tapias, H. J. Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica. DYNA 2024, 91, 153-162.

APA

Bastidas-Martínez, J. G., Herrera-Cano, C. E. y Bautista-Tapias, H. J. (2024). Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica. DYNA, 91(231), 153–162. https://doi.org/10.15446/dyna.v91n231.112274

ABNT

BASTIDAS-MARTÍNEZ, J. G.; HERRERA-CANO, C. E.; BAUTISTA-TAPIAS, H. J. Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica. DYNA, [S. l.], v. 91, n. 231, p. 153–162, 2024. DOI: 10.15446/dyna.v91n231.112274. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/112274. Acesso em: 6 mar. 2025.

Chicago

Bastidas-Martínez, Juan Gabriel, Camilo Ernesto Herrera-Cano, y Howen Jair Bautista-Tapias. 2024. «Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica». DYNA 91 (231):153-62. https://doi.org/10.15446/dyna.v91n231.112274.

Harvard

Bastidas-Martínez, J. G., Herrera-Cano, C. E. y Bautista-Tapias, H. J. (2024) «Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica», DYNA, 91(231), pp. 153–162. doi: 10.15446/dyna.v91n231.112274.

MLA

Bastidas-Martínez, J. G., C. E. Herrera-Cano, y H. J. Bautista-Tapias. «Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica». DYNA, vol. 91, n.º 231, enero de 2024, pp. 153-62, doi:10.15446/dyna.v91n231.112274.

Turabian

Bastidas-Martínez, Juan Gabriel, Camilo Ernesto Herrera-Cano, y Howen Jair Bautista-Tapias. «Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica». DYNA 91, no. 231 (enero 24, 2024): 153–162. Accedido marzo 6, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/112274.

Vancouver

1.
Bastidas-Martínez JG, Herrera-Cano CE, Bautista-Tapias HJ. Desempeño de una vía no pavimentada reforzada con geomalla: construcción de un modelo físico en laboratorio y validación numérica. DYNA [Internet]. 24 de enero de 2024 [citado 6 de marzo de 2025];91(231):153-62. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/112274

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

216

Descargas