Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors
Predicción de la adicción a Internet en estudiantes universitarios mediante un modelo 1D-CNN: análisis de los factores influyentes
DOI:
https://doi.org/10.15446/dyna.v91n233.112788Palabras clave:
internet addiction, 1D-CNN, predicting, college students, model (en)adicción a Internet, red neuronal profunda, predicción, estudiantes universitarios, modelo (es)
Descargas
This study constructs a deep learning-based model to predict internet addiction among college students and analyzes significant influencing factors. A random survey of 4,895 students from a university in Shandong Province was conducted using questionnaires on general information, internet addiction (CIAS-R), personality (CBF-PI-B), psychological traits (SDS, SAS), parenting styles (EMBU), behavioral issues (SAS-C), and social support (ASSRS) to establish a database. A predictive model was developed using a 1D Convolutional Neural Network (1D-CNN), extracting key influencing factors of internet addiction. The model showed 92.77% accuracy, with high precision and recall rates for predicting normal users and addicts. The gradient calculation indicates that in second-year students, negative and withdrawal behaviors, depression, over-interfering families, and anxiety significantly contribute to Internet addiction, with factors exceeding 0.5. The 1D-CNN model offers robust performance and accuracy in predicting internet addiction, identifying significant factors for early prevention and potential integration with apps for real-time monitoring.
Este estudio construye un modelo basado en el aprendizaje profundo para predecir la adicción a Internet entre los estudiantes universitarios y analiza los factores influyentes significativos. Se realizó una encuesta aleatoria a 4.895 estudiantes de una universidad de la provincia de Shandong mediante cuestionarios sobre información general, adicción a internet (CIAS-R), personalidad (CBF-PI-B), rasgos psicológicos (SDS, SAS), estilos parentales (EMBU), problemas de conducta (SAS-C) y apoyo social (ASSRS) para establecer una base de datos. Se desarrolló un modelo predictivo utilizando una red neuronal convolucional 1D (1D-CNN), extrayendo los factores clave que influyen en la adicción a Internet. El modelo mostró una exactitud del 92,77%, con altos índices de precisión y recuerdo para predecir usuarios normales y adictos. El cálculo del gradiente indica que, en los estudiantes de segundo curso, los comportamientos negativos y de retraimiento, la depresión, el exceso de interferencia familiar y la ansiedad contribuyen significativamente a la adicción a Internet, con factores superiores a 0,5. El modelo 1D-CNN ofrece un rendimiento y una precisión robustos en la predicción de la adicción a Internet, identificando factores significativos para la prevención temprana y la integración potencial con apps para la monitorización en tiempo real.
Referencias
[1] Duong, X.L., Liaw, S.Y., and Augustin, J.L.P.M., How has Internet Addiction Tracked Over the Last Decade? A Literature Review and 3C Paradigm for Future Research. International journal of preventive medicine, 11, pp. 175, 2020. DOI: https://10.4103/ijpvm.IJPVM_212_20
[2] Bickham, D.S., Current Research and Viewpoints on Internet Addiction in Adolescents. Current Pediatrics Reports, 9(1), pp. 1-10, 2021. DOI: https://10.1007/s40124-020-00236-3
[3] Chou, C., Condron, L., and Belland, J.C., A Review of the Research on Internet Addiction. Educational Psychology Review, 17(4), pp. 363-388, 2005. DOI: https://10.1007/s10648-005-8138-1
[4] King, D.L., Chamberlain, S.R., Carragher, N., Billieux, J., Stein, D., Mueller, K., Potenza, M.N., Rumpf, H.J., Saunders, J., Starcevic, V., Demetrovics, Z., Brand, M., Lee, H.K., Spada, M., Lindenberg, K., Wu, A.M.S., Lemenager, T., Pallesen, S., Achab, S., Kyrios, M., Higuchi, S., Fineberg, N.A., and Delfabbro, P.H., Screening and assessment tools for gaming disorder: A comprehensive systematic review. Clinical Psychology Review, 77, pp. 101831, 2020. DOI: https://10.1016/j.cpr.2020.101831
[5] Saunders, J.B., Hao, W., Long, J., King, D.L., Mann, K., Fauth-Bühler, M., Rumpf, H.J., Bowden-Jones, H., Rahimi-Movaghar, A., Chung, T., Chan, E., Bahar, N., Achab, S., Lee, H.K., Potenza, M., Petry, N., Spritzer, D., Ambekar, A., Derevensky, J., Griffiths, M.D., Pontes, H.M., Kuss, D., Higuchi, S., Mihara, S., Assangangkornchai, S., Sharma, M., Kashef, A.E., Ip, P., Farrell, M., Scafato, E., Carragher, N., and Poznyak, V., Gaming disorder: Its delineation as an important condition for diagnosis, management, and prevention. Journal of Behavioral Addictions, 6(3), pp. 271-279, 2017. DOI: https://10.1556/2006.6.2017.039
[6] Kardefelt-Winther, D., A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Computers in Human Behavior, 31, pp. 351-354, 2014. DOI: https://10.1016/j.chb.2013.10.059
[7] Yang, K., Chen, J., and Liu, J., Relationship between personality traits, depression, anxiety and Internet overuse in junior middle school students. Journal of Psychiatry, 32(6), pp. 429-432, 2019. DOI: https://10.3969/j.issn.2095-9346.2019.06.007
[8] Chemnad, K., Aziz, M., Belhaouari, S.B., and Ali, R., The interplay between social media use and problematic internet usage: Four behavioral patterns. Heliyon, 9(5), pp. e15745, 2023. DOI: https://10.1016/j.heliyon.2023.e15745
[9] Lai, C.M., Mak, K.K., Watanabe, H., Ang, R.P., Pang, J.S., and Ho, R.C.M., Psychometric Properties of the Internet Addiction Test in Chinese Adolescents. Journal of Pediatric Psychology, 38(7), pp. 794-807, 2013. DOI: https://10.1093/jpepsy/jst022
[10] Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., Lackenby, M., Williamson, G., Hassabis, D., and Kohli, P., Advancing mathematics by guiding human intuition with AI. Nature, 600(7887), pp. 70-74, 2021. DOI: https://10.1038/s41586-021-04086-x
[11] Han, Y., Liao, Y., Ma, X., Guo, X., Li, C., and Liu, X., Analysis and prediction of the penetration of renewable energy in power systems using artificial neural network. Renewable Energy, 215, pp. 118914, 2023. DOI: https://10.1016/j.renene.2023.118914
[12] Di, Z., Gong, X., Shi, J., Ahmed, H.O.A., and Nandi, A.K., Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine. Addictive Behaviors Reports, 10(1), pp. 100200, 2019. DOI: https://10.1016/j.abrep.2019.100200
[13] Chaudhury, P., and Kumar, T.H., A Study on impact of smartphone addiction on academic performance. International Journal of Engineering & Technology, 7(2.6), pp. 50, 2018. DOI: https://10.14419/ijet.v7i2.6.10066
[14] Shae, Z.Y., and Tsai, J.J.P., In Deep Learning Mechanism for Pervasive Internet Addiction Prediction, 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, IEEE: Atlanta, GA, USA, 2020.
[15] Mak, K.K., Lai, C.M., Ko, C.H., Chou, C., Kim, D.I., Watanabe, H., and Ho, R.C.M., Psychometric Properties of the Revised Chen Internet Addiction Scale (CIAS-R) in Chinese Adolescents. Journal of Abnormal Child Psychology, 42(7), pp. 1237-1245, 2014. DOI: https://10.1007/s10802-014-9851-3
[16] Zhang, X., Wang, M.C., He, L., Jie, L., and Deng, J., The development and psychometric evaluation of the Chinese Big Five Personality Inventory-15. PLOS ONE, 14(8), pp. e0221621, 2019. DOI: https://10.1371/journal.pone.0221621
[17] Huang, Q., Li, Y., Huang, S., Qi, J., Shao, T., Chen, X., Liao, Z., Lin, S., Zhang, X., Cai, Y., and Chen, H., Smartphone Use and Sleep Quality in Chinese College Students: A Preliminary Study. Frontiers in Psychiatry, 11, pp. 352, 2020. DOI: https://10.3389/fpsyt.2020.00352
[18] Dunstan, D.A., and Scott, N., Norms for Zung’s Self-rating Anxiety Scale. BMC Psychiatry, 20(1), pp. 90, 2020. DOI: https://10.1186/s12888-019-2427-6
[19] Khalid, A., Zhang, Q., Wang, W., Ghaffari, A.S., and Pan, F., The relationship between procrastination, perceived stress, saliva alpha-amylase level and parenting styles in Chinese first year medical students. Psychology Research and Behavior Management, 12(11), pp. 489-498, 2019. DOI: https://10.2147/prbm.S207430
[20] Zhang, Q., Ran, G., and Ren, J., Parental Psychological Control and Addiction Behaviors in Smartphone and Internet: The Mediating Role of Shyness among Adolescents. International Journal of Environmental Research and Public Health, 19(24), pp. 16702, 2022. DOI: https://10.3390/ijerph192416702
[21] Kerres Malecki, C. and Kilpatrick Demary, M., Measuring perceived social support: Development of the child and adolescent social support scale (CASSS). Psychology in the Schools, 39(1), pp. 1-18, 2001. DOI: https://10.1002/pits.10004
[22] Imamverdiyev, Y., and Sukhostat, L., Lithological facies classification using deep convolutional neural network. Journal of Petroleum Science and Engineering, 174, pp. 216-228, 2019. DOI: https://10.1016/j.petrol.2018.11.023
[23] Liu, J.J., and Liu, J.C., Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs. Geoscience Frontiers, 13(1), pp. 101311, 2022. DOI: https://10.1016/j.gsf.2021.101311
[24] Guo, W., Shen, W., Zhou, S., Xue, H., Liu, D., and Wang, N., Shale favorable area optimization in coal-bearing series: A case study from the Shanxi Formation in Northern Ordos Basin, China. Energy Exploration & Exploitation, 36(5), pp. 1295-1309, 2017. DOI: https://10.1177/0144598717748951
[25] Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., and Muharemagic, E., Deep learning applications and challenges in big data analytics. Journal of big data, 2(1), pp. 1-21, 2015. DOI: https://10.1186/s40537-014-0007-7
[26] Kulkarni, S.R., and Harman, G., Statistical learning theory: a tutorial. WIREs Computational Statistics, 3(6), pp. 543-556, 2011. DOI: https://10.1002/wics.179
[27] Kingma, D.P., and Ba, J., Adam: A Method for Stochastic Optimization. arXiv.org, pp. 2014. DOI: https://10.48550/arXiv.1412.6980
[28] Huang, H., Wan, X., Lu, G., Ding, Y., and Chen, C., The Relationship Between Alexithymia and Mobile Phone Addiction Among Mainland Chinese Students: A Meta-Analysis. Frontiers in Psychiatry, 13(11), pp. 2022. DOI: https://10.3389/fpsyt.2022.754542
[29] Xie, X., Cheng, H., and Chen, Z., Anxiety predicts internet addiction, which predicts depression among male college students: A cross-lagged comparison by sex. Frontiers in Psychology, 13, pp. 1102066, 2023. DOI: https://10.3389/fpsyg.2022.1102066
[30] Kuss, D.J., van Rooij, A.J., Shorter, G.W., Griffiths, M.D., and van de Mheen, D., Internet addiction in adolescents: Prevalence and risk factors. Computers in Human Behavior, 29(5), pp. 1987-1996, 2013. DOI: https://10.1016/j.chb.2013.04.002
[31] Ioannidis, K., Chamberlain, S.R., Treder, M.S., Kiraly, F., Leppink, E.W., Redden, S.A., Stein, D.J., Lochner, C., and Grant, J.E., Problematic internet use (PIU): Associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry. Journal of Psychiatric Research, 83, pp. 94-102, 2016. DOI: https://10.1016/j.jpsychires.2016.08.010
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.