Publicado

2024-08-15

Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors

Predicción de la adicción a Internet en estudiantes universitarios mediante un modelo 1D-CNN: análisis de los factores influyentes

DOI:

https://doi.org/10.15446/dyna.v91n233.112788

Palabras clave:

internet addiction, 1D-CNN, predicting, college students, model (en)
adicción a Internet, red neuronal profunda, predicción, estudiantes universitarios, modelo (es)

Descargas

Autores/as

This study constructs a deep learning-based model to predict internet addiction among college students and analyzes significant influencing factors. A random survey of 4,895 students from a university in Shandong Province was conducted using questionnaires on general information, internet addiction (CIAS-R), personality (CBF-PI-B), psychological traits (SDS, SAS), parenting styles (EMBU), behavioral issues (SAS-C), and social support (ASSRS) to establish a database. A predictive model was developed using a 1D Convolutional Neural Network (1D-CNN), extracting key influencing factors of internet addiction. The model showed 92.77% accuracy, with high precision and recall rates for predicting normal users and addicts. The gradient calculation indicates that in second-year students, negative and withdrawal behaviors, depression, over-interfering families, and anxiety significantly contribute to Internet addiction, with factors exceeding 0.5. The 1D-CNN model offers robust performance and accuracy in predicting internet addiction, identifying significant factors for early prevention and potential integration with apps for real-time monitoring.

Este estudio construye un modelo basado en el aprendizaje profundo para predecir la adicción a Internet entre los estudiantes universitarios y analiza los factores influyentes significativos. Se realizó una encuesta aleatoria a 4.895 estudiantes de una universidad de la provincia de Shandong mediante cuestionarios sobre información general, adicción a internet (CIAS-R), personalidad (CBF-PI-B), rasgos psicológicos (SDS, SAS), estilos parentales (EMBU), problemas de conducta (SAS-C) y apoyo social (ASSRS) para establecer una base de datos. Se desarrolló un modelo predictivo utilizando una red neuronal convolucional 1D (1D-CNN), extrayendo los factores clave que influyen en la adicción a Internet. El modelo mostró una exactitud del 92,77%, con altos índices de precisión y recuerdo para predecir usuarios normales y adictos. El cálculo del gradiente indica que, en los estudiantes de segundo curso, los comportamientos negativos y de retraimiento, la depresión, el exceso de interferencia familiar y la ansiedad contribuyen significativamente a la adicción a Internet, con factores superiores a 0,5. El modelo 1D-CNN ofrece un rendimiento y una precisión robustos en la predicción de la adicción a Internet, identificando factores significativos para la prevención temprana y la integración potencial con apps para la monitorización en tiempo real.

Referencias

[1] Duong, X.L., Liaw, S.Y., and Augustin, J.L.P.M., How has Internet Addiction Tracked Over the Last Decade? A Literature Review and 3C Paradigm for Future Research. International journal of preventive medicine, 11, pp. 175, 2020. DOI: https://10.4103/ijpvm.IJPVM_212_20

[2] Bickham, D.S., Current Research and Viewpoints on Internet Addiction in Adolescents. Current Pediatrics Reports, 9(1), pp. 1-10, 2021. DOI: https://10.1007/s40124-020-00236-3

[3] Chou, C., Condron, L., and Belland, J.C., A Review of the Research on Internet Addiction. Educational Psychology Review, 17(4), pp. 363-388, 2005. DOI: https://10.1007/s10648-005-8138-1

[4] King, D.L., Chamberlain, S.R., Carragher, N., Billieux, J., Stein, D., Mueller, K., Potenza, M.N., Rumpf, H.J., Saunders, J., Starcevic, V., Demetrovics, Z., Brand, M., Lee, H.K., Spada, M., Lindenberg, K., Wu, A.M.S., Lemenager, T., Pallesen, S., Achab, S., Kyrios, M., Higuchi, S., Fineberg, N.A., and Delfabbro, P.H., Screening and assessment tools for gaming disorder: A comprehensive systematic review. Clinical Psychology Review, 77, pp. 101831, 2020. DOI: https://10.1016/j.cpr.2020.101831

[5] Saunders, J.B., Hao, W., Long, J., King, D.L., Mann, K., Fauth-Bühler, M., Rumpf, H.J., Bowden-Jones, H., Rahimi-Movaghar, A., Chung, T., Chan, E., Bahar, N., Achab, S., Lee, H.K., Potenza, M., Petry, N., Spritzer, D., Ambekar, A., Derevensky, J., Griffiths, M.D., Pontes, H.M., Kuss, D., Higuchi, S., Mihara, S., Assangangkornchai, S., Sharma, M., Kashef, A.E., Ip, P., Farrell, M., Scafato, E., Carragher, N., and Poznyak, V., Gaming disorder: Its delineation as an important condition for diagnosis, management, and prevention. Journal of Behavioral Addictions, 6(3), pp. 271-279, 2017. DOI: https://10.1556/2006.6.2017.039

[6] Kardefelt-Winther, D., A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Computers in Human Behavior, 31, pp. 351-354, 2014. DOI: https://10.1016/j.chb.2013.10.059

[7] Yang, K., Chen, J., and Liu, J., Relationship between personality traits, depression, anxiety and Internet overuse in junior middle school students. Journal of Psychiatry, 32(6), pp. 429-432, 2019. DOI: https://10.3969/j.issn.2095-9346.2019.06.007

[8] Chemnad, K., Aziz, M., Belhaouari, S.B., and Ali, R., The interplay between social media use and problematic internet usage: Four behavioral patterns. Heliyon, 9(5), pp. e15745, 2023. DOI: https://10.1016/j.heliyon.2023.e15745

[9] Lai, C.M., Mak, K.K., Watanabe, H., Ang, R.P., Pang, J.S., and Ho, R.C.M., Psychometric Properties of the Internet Addiction Test in Chinese Adolescents. Journal of Pediatric Psychology, 38(7), pp. 794-807, 2013. DOI: https://10.1093/jpepsy/jst022

[10] Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., Lackenby, M., Williamson, G., Hassabis, D., and Kohli, P., Advancing mathematics by guiding human intuition with AI. Nature, 600(7887), pp. 70-74, 2021. DOI: https://10.1038/s41586-021-04086-x

[11] Han, Y., Liao, Y., Ma, X., Guo, X., Li, C., and Liu, X., Analysis and prediction of the penetration of renewable energy in power systems using artificial neural network. Renewable Energy, 215, pp. 118914, 2023. DOI: https://10.1016/j.renene.2023.118914

[12] Di, Z., Gong, X., Shi, J., Ahmed, H.O.A., and Nandi, A.K., Internet addiction disorder detection of Chinese college students using several personality questionnaire data and support vector machine. Addictive Behaviors Reports, 10(1), pp. 100200, 2019. DOI: https://10.1016/j.abrep.2019.100200

[13] Chaudhury, P., and Kumar, T.H., A Study on impact of smartphone addiction on academic performance. International Journal of Engineering & Technology, 7(2.6), pp. 50, 2018. DOI: https://10.14419/ijet.v7i2.6.10066

[14] Shae, Z.Y., and Tsai, J.J.P., In Deep Learning Mechanism for Pervasive Internet Addiction Prediction, 2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI), Atlanta, GA, USA, IEEE: Atlanta, GA, USA, 2020.

[15] Mak, K.K., Lai, C.M., Ko, C.H., Chou, C., Kim, D.I., Watanabe, H., and Ho, R.C.M., Psychometric Properties of the Revised Chen Internet Addiction Scale (CIAS-R) in Chinese Adolescents. Journal of Abnormal Child Psychology, 42(7), pp. 1237-1245, 2014. DOI: https://10.1007/s10802-014-9851-3

[16] Zhang, X., Wang, M.C., He, L., Jie, L., and Deng, J., The development and psychometric evaluation of the Chinese Big Five Personality Inventory-15. PLOS ONE, 14(8), pp. e0221621, 2019. DOI: https://10.1371/journal.pone.0221621

[17] Huang, Q., Li, Y., Huang, S., Qi, J., Shao, T., Chen, X., Liao, Z., Lin, S., Zhang, X., Cai, Y., and Chen, H., Smartphone Use and Sleep Quality in Chinese College Students: A Preliminary Study. Frontiers in Psychiatry, 11, pp. 352, 2020. DOI: https://10.3389/fpsyt.2020.00352

[18] Dunstan, D.A., and Scott, N., Norms for Zung’s Self-rating Anxiety Scale. BMC Psychiatry, 20(1), pp. 90, 2020. DOI: https://10.1186/s12888-019-2427-6

[19] Khalid, A., Zhang, Q., Wang, W., Ghaffari, A.S., and Pan, F., The relationship between procrastination, perceived stress, saliva alpha-amylase level and parenting styles in Chinese first year medical students. Psychology Research and Behavior Management, 12(11), pp. 489-498, 2019. DOI: https://10.2147/prbm.S207430

[20] Zhang, Q., Ran, G., and Ren, J., Parental Psychological Control and Addiction Behaviors in Smartphone and Internet: The Mediating Role of Shyness among Adolescents. International Journal of Environmental Research and Public Health, 19(24), pp. 16702, 2022. DOI: https://10.3390/ijerph192416702

[21] Kerres Malecki, C. and Kilpatrick Demary, M., Measuring perceived social support: Development of the child and adolescent social support scale (CASSS). Psychology in the Schools, 39(1), pp. 1-18, 2001. DOI: https://10.1002/pits.10004

[22] Imamverdiyev, Y., and Sukhostat, L., Lithological facies classification using deep convolutional neural network. Journal of Petroleum Science and Engineering, 174, pp. 216-228, 2019. DOI: https://10.1016/j.petrol.2018.11.023

[23] Liu, J.J., and Liu, J.C., Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs. Geoscience Frontiers, 13(1), pp. 101311, 2022. DOI: https://10.1016/j.gsf.2021.101311

[24] Guo, W., Shen, W., Zhou, S., Xue, H., Liu, D., and Wang, N., Shale favorable area optimization in coal-bearing series: A case study from the Shanxi Formation in Northern Ordos Basin, China. Energy Exploration & Exploitation, 36(5), pp. 1295-1309, 2017. DOI: https://10.1177/0144598717748951

[25] Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., and Muharemagic, E., Deep learning applications and challenges in big data analytics. Journal of big data, 2(1), pp. 1-21, 2015. DOI: https://10.1186/s40537-014-0007-7

[26] Kulkarni, S.R., and Harman, G., Statistical learning theory: a tutorial. WIREs Computational Statistics, 3(6), pp. 543-556, 2011. DOI: https://10.1002/wics.179

[27] Kingma, D.P., and Ba, J., Adam: A Method for Stochastic Optimization. arXiv.org, pp. 2014. DOI: https://10.48550/arXiv.1412.6980

[28] Huang, H., Wan, X., Lu, G., Ding, Y., and Chen, C., The Relationship Between Alexithymia and Mobile Phone Addiction Among Mainland Chinese Students: A Meta-Analysis. Frontiers in Psychiatry, 13(11), pp. 2022. DOI: https://10.3389/fpsyt.2022.754542

[29] Xie, X., Cheng, H., and Chen, Z., Anxiety predicts internet addiction, which predicts depression among male college students: A cross-lagged comparison by sex. Frontiers in Psychology, 13, pp. 1102066, 2023. DOI: https://10.3389/fpsyg.2022.1102066

[30] Kuss, D.J., van Rooij, A.J., Shorter, G.W., Griffiths, M.D., and van de Mheen, D., Internet addiction in adolescents: Prevalence and risk factors. Computers in Human Behavior, 29(5), pp. 1987-1996, 2013. DOI: https://10.1016/j.chb.2013.04.002

[31] Ioannidis, K., Chamberlain, S.R., Treder, M.S., Kiraly, F., Leppink, E.W., Redden, S.A., Stein, D.J., Lochner, C., and Grant, J.E., Problematic internet use (PIU): Associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry. Journal of Psychiatric Research, 83, pp. 94-102, 2016. DOI: https://10.1016/j.jpsychires.2016.08.010

Cómo citar

IEEE

[1]
X. Wang, E. Zhang, Y. Cui, J. Huang, y M. Cheng, «Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors», DYNA, vol. 91, n.º 233, pp. 66–74, ago. 2024.

ACM

[1]
Wang, X., Zhang, E., Cui, Y., Huang, J. y Cheng, M. 2024. Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors. DYNA. 91, 233 (ago. 2024), 66–74. DOI:https://doi.org/10.15446/dyna.v91n233.112788.

ACS

(1)
Wang, X.; Zhang, E.; Cui, Y.; Huang, J.; Cheng, M. Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors. DYNA 2024, 91, 66-74.

APA

Wang, X., Zhang, E., Cui, Y., Huang, J. y Cheng, M. (2024). Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors. DYNA, 91(233), 66–74. https://doi.org/10.15446/dyna.v91n233.112788

ABNT

WANG, X.; ZHANG, E.; CUI, Y.; HUANG, J.; CHENG, M. Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors. DYNA, [S. l.], v. 91, n. 233, p. 66–74, 2024. DOI: 10.15446/dyna.v91n233.112788. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/112788. Acesso em: 6 mar. 2025.

Chicago

Wang, Xi, Enyou Zhang, Yingjun Cui, Jie Huang, y Meng Cheng. 2024. «Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors». DYNA 91 (233):66-74. https://doi.org/10.15446/dyna.v91n233.112788.

Harvard

Wang, X., Zhang, E., Cui, Y., Huang, J. y Cheng, M. (2024) «Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors», DYNA, 91(233), pp. 66–74. doi: 10.15446/dyna.v91n233.112788.

MLA

Wang, X., E. Zhang, Y. Cui, J. Huang, y M. Cheng. «Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors». DYNA, vol. 91, n.º 233, agosto de 2024, pp. 66-74, doi:10.15446/dyna.v91n233.112788.

Turabian

Wang, Xi, Enyou Zhang, Yingjun Cui, Jie Huang, y Meng Cheng. «Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors». DYNA 91, no. 233 (agosto 1, 2024): 66–74. Accedido marzo 6, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/112788.

Vancouver

1.
Wang X, Zhang E, Cui Y, Huang J, Cheng M. Predicting Internet addiction in college students using a 1D-CNN model: analysis of influencing factors. DYNA [Internet]. 1 de agosto de 2024 [citado 6 de marzo de 2025];91(233):66-74. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/112788

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 9
  • Mentions
  • News: 1

Visitas a la página del resumen del artículo

143

Descargas