The Multiphysics phenomena influencing landfill design.

Publicado

2024-12-10

Numerical simulation of waste landfill biodegradation: Fitting experimental data

Simulación numérica de la biodegradación en rellenos sanitarios: ajuste de datos experimentales

DOI:

https://doi.org/10.15446/dyna.v91n234.113404

Palabras clave:

waste landfill, biodegradation, mathematical modeling, methane generation (en)
relleno sanitario, biodegradación, modelado matemática, generación de metano (es)

Descargas

Autores/as

Landfill remains economically viable for the disposal of Municipal Solid Waste (MSW), however, experiences of failure in several Colombian and global locations, lead to soil, water, and air pollution, harming ecosystems, and biodiversity. Numerical models can help improve the design by considering biodegradation, hydraulic, thermal, and mechanical phenomena involved in landfills. This paper presents a simulation of the landfill biodegradation, calibrating parameters to make results match experimental data from previous references. COMSOL Multiphysics was used to implement McDougall's biodegradation model, tracking organic matter transformation into volatile fatty acids (VFA) and methane (CH4) production via acetogenesis. Parameters taken from previous references were recalibrated to fit data from six US landfills. The results for the concentration variation with time for organic matter, VFA and CH4 successfully follows the expected behavior and fits the experimental data. McDougall's 2007 model, successfully implemented in COMSOL, can be calibrated for data from Colombian and global landfills.

Los rellenos sanitarios siguen siendo económicamente viables para la disposición de Residuos Sólidos Urbanos (RSU), sin embargo, experiencias de fallas en varios lugares de Colombia y el mundo, conducen a la contaminación del suelo, agua y aire, perjudicando los ecosistemas, y la biodiversidad. Los modelos numéricos pueden ayudar a mejorar el diseño considerando los fenómenos de biodegradación, hidráulicos, térmicos y mecánicos involucrados en los rellenos sanitarios. Este trabajo presenta una simulación de la biodegradación en rellenos sanitarios, calibrando los parámetros para que los resultados coincidan con los datos experimentales de la literatura técnica. Se utilizó COMSOL Multiphysics para implementar el modelo de biodegradación de McDougall, siguiendo la transformación de la materia orgánica en ácidos grasos volátiles (AGV) y la producción de metano (CH4) vía acetogénesis. Los parámetros tomados de referencias anteriores se recalibraron para ajustarlos a los datos de seis vertederos estadounidenses. Los resultados de la variación de la concentración con el tiempo para la materia orgánica, los AGV y el CH4 siguen satisfactoriamente el comportamiento esperado y se ajustan a los datos experimentales. El modelo de McDougall de 2007, implementado con éxito en COMSOL, puede calibrarse para datos de rellenos colombianos y mundiales.

Referencias

[1] Krase, V., Bente, S., Kowalsky, U., and Dinkler, D., Modelling the stress-deformation behaviour of municipal solid waste, Geotechnique, 61(8), pp. 665–675, 2011. DOI: https://doi.org/10.1680/geot.8.P.140.

[2] Hubert, J., Liu, X. F. and Collin, F., Numerical modeling of the long term behavior of Municipal Solid Waste in a bioreactor landfill, Comput Geotech, 72, pp. 152–170, 2016. DOI: https://doi.org/10.1016/j.compgeo.2015.10.007

[3] McDougall, J., A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Comput Geotech, 34(4), pp. 229–246, 2007. DOI: https://doi.org/10.1016/j.compgeo.2007.02.004.

[4] White, J., Robinson, J., and Ren, Q., Modelling the biochemical degradation of solid waste in landfills, Waste Management, 24(3), pp. 227–240, 2004. DOI: https://doi.org/10.1016/j.wasman.2003.11.009.

[5] Ivanova, L.K., Richards, D.J., and Smallman, D.J., Assessment of the anaerobic biodegradation potential of MSW, Proceedings of Institution of Civil Engineers: Waste and Resource Management, 161(4), pp. 167–180, 2008. DOI: https://doi.org/10.1680/warm.2008.161.4.167.

[6] Hettiarachchi, H., Meegoda, J., and Hettiaratchi, P., Effects of gas and moisture on modeling of bioreactor landfill settlement, Waste Management, 29(3), pp. 1018–1025, 2009. DOI: https://doi.org/10.1016/j.wasman.2008.08.018.

[7] Chen, Y., Xu, X., and Zhan, L., Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Sci China Technol Sci, 55(1), pp. 81–89, 2012. DOI: https://doi.org/10.1007/s11431-011-4667-7.

[8] Staub, M.J., Gourc, J.-P., Drut, N., Stoltz, G., and Mansour, A.A., Large-scale bioreactor pilots for monitoring the long-term hydromechanics of MSW. J Hazard Toxic Radioact Waste, 17(4), pp. 285–294, 2013. DOI: https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000160.

[9] Machado, S.L., Carvalho, M.F. and Vilar, O.M., Constitutive model for municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(11), pp. 940–951, 2002. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940).

[10] Babu, G.L.S., Reddy, K.R., Chouskey, S.K., and Kulkarni, H.S., Prediction of long-term municipal solid waste landfill settlement using constitutive model. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(2), pp. 139–150, 2010. DOI: https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000024.

[11] Liu, X., Shi, J., Qian, X., Hu, Y., and Peng, G., One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation. Waste Management, 31(12), pp. 2473–2483, 2011. DOI: https://doi.org/10.1016/j.wasman.2011.07.013.

[12] Garg, A., and Achari, G., A comprehensive numerical model simulating gas, heat, and moisture transport in sanitary landfills and methane oxidation in final covers. Environmental Modeling & Assessment, 15(5), pp. 397–410, 2010. DOI: https://doi.org/10.1007/s10666-009-9217-3

[13] Gholamifard, S., Eymard, R., and Duquennoi, C., Modeling anaerobic bioreactor landfills in methanogenic phase: long term and short term behaviors. Water Res, 42(20), pp. 5061–5071, 2008. DOI: https://doi.org/10.1016/j.watres.2008.09.040

[14] Gawande, N.A., Reinhart, D.R., and Yeh, G.-T., Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part I: development of a three-phase numerical model BIOKEMOD-3P. Waste Management, 30(2), pp. 202–210, 2010. DOI: https://doi.org/10.1016/j.wasman.2009.09.009

[15] Hanson, J.L., Yeşiller, N., Onnen, M.T., Liu, W.L., Oettle, N.K., and Marinos, J.A., Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Management, 33(10), pp. 1993–2000, 2013. DOI: https://doi.org/10.1016/j.wasman.2013.04.003

[16] Kumar, G., Reddy, K.R., and McDougall, J., Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills. Comput Geotech, 128, art. 103836, 2020. DOI: https://doi.org/10.1016/j.compgeo.2020.103836

[17] Fei, X., and Zekkos, D., Coupled experimental assessment of physico-biochemical characteristics of municipal solid waste undergoing enhanced biodegradation. Géotechnique, 68(12), pp. 1031–1043, 2018. DOI: https://doi.org/10.1680/jgeot.16.P.253

[18] Datta, S., and Zekkos, D., The influence of waste composition on biogas generation model parameters. Environmental Geotechnics, 10(7), pp. 443-454, 2021. DOI: https://doi.org/10.1680/jenge.20.00058

[19] Haarstrick, A., Hempel, D.C., Ostermann, L., Ahrens, H., and Dinkler, D., Modelling of the biodegradation of organic matter in municipal landfills. Waste Management & Research: the Journal for a Sustainable Circular Economy, 19(4), pp. 320–331, 2001. DOI: https://doi.org/10.1177/0734242X0101900409.

[20] Datta, S., Zekkos, D., Fei, X., and Mcdougall, J., Waste-composition-dependent ‘HBM’ model parameters based on degradation experiments, Environmental Geotechnics, 8(2), pp. 124-133, 2018. DOI: https://doi.org/10.1680/jenge.18.00014

[21] Kumar, G., Reddy, K.R., and McDougall, J., Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills, Comput Geotech, 128, 2020. DOI: https://doi.org/10.1016/j.compgeo.2020.103836

Cómo citar

IEEE

[1]
V. Buelvas-Hernandez, J. L. Moreno-Medina, y M. Mercado-Montoya, «Numerical simulation of waste landfill biodegradation: Fitting experimental data», DYNA, vol. 91, n.º 234, pp. 135–139, oct. 2024.

ACM

[1]
Buelvas-Hernandez, V., Moreno-Medina, J.L. y Mercado-Montoya , M. 2024. Numerical simulation of waste landfill biodegradation: Fitting experimental data. DYNA. 91, 234 (oct. 2024), 135–139. DOI:https://doi.org/10.15446/dyna.v91n234.113404.

ACS

(1)
Buelvas-Hernandez, V.; Moreno-Medina, J. L.; Mercado-Montoya , M. Numerical simulation of waste landfill biodegradation: Fitting experimental data. DYNA 2024, 91, 135-139.

APA

Buelvas-Hernandez, V., Moreno-Medina, J. L. & Mercado-Montoya , M. (2024). Numerical simulation of waste landfill biodegradation: Fitting experimental data. DYNA, 91(234), 135–139. https://doi.org/10.15446/dyna.v91n234.113404

ABNT

BUELVAS-HERNANDEZ, V.; MORENO-MEDINA, J. L.; MERCADO-MONTOYA , M. Numerical simulation of waste landfill biodegradation: Fitting experimental data. DYNA, [S. l.], v. 91, n. 234, p. 135–139, 2024. DOI: 10.15446/dyna.v91n234.113404. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/113404. Acesso em: 26 dic. 2025.

Chicago

Buelvas-Hernandez, Vladimir, Juliana Lucía Moreno-Medina, y Marcela Mercado-Montoya. 2024. «Numerical simulation of waste landfill biodegradation: Fitting experimental data». DYNA 91 (234):135-39. https://doi.org/10.15446/dyna.v91n234.113404.

Harvard

Buelvas-Hernandez, V., Moreno-Medina, J. L. y Mercado-Montoya , M. (2024) «Numerical simulation of waste landfill biodegradation: Fitting experimental data», DYNA, 91(234), pp. 135–139. doi: 10.15446/dyna.v91n234.113404.

MLA

Buelvas-Hernandez, V., J. L. Moreno-Medina, y M. Mercado-Montoya. «Numerical simulation of waste landfill biodegradation: Fitting experimental data». DYNA, vol. 91, n.º 234, octubre de 2024, pp. 135-9, doi:10.15446/dyna.v91n234.113404.

Turabian

Buelvas-Hernandez, Vladimir, Juliana Lucía Moreno-Medina, y Marcela Mercado-Montoya. «Numerical simulation of waste landfill biodegradation: Fitting experimental data». DYNA 91, no. 234 (octubre 22, 2024): 135–139. Accedido diciembre 26, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/113404.

Vancouver

1.
Buelvas-Hernandez V, Moreno-Medina JL, Mercado-Montoya M. Numerical simulation of waste landfill biodegradation: Fitting experimental data. DYNA [Internet]. 22 de octubre de 2024 [citado 26 de diciembre de 2025];91(234):135-9. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/113404

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Caio Henrique Buranello dos Santos, Sandro Lemos Machado, Michael Andrade Maedo, Roger Augusto Rodrigues. (2026). Numerical modeling of settlement and gas generation in biodegrading municipal solid waste: a systematic review for sanitary landfill applications. Waste Management, 211, p.115285. https://doi.org/10.1016/j.wasman.2025.115285.

Dimensions

PlumX

Visitas a la página del resumen del artículo

212

Descargas

Los datos de descargas todavía no están disponibles.