Publicado
Reliability prediction for automotive electronics
Predicción de confiabilidad para electrónica automotriz
DOI:
https://doi.org/10.15446/dyna.v91n233.114851Palabras clave:
predicción de confiabilidad, taza de falla, SN 29500, perfil vida, fallas en tiempo (es)reliability prediction, failure rate, SN 29500, mission profile, failure in time (en)
Descargas
La predicción de confiabilidad de productos electrónicos es una actividad fundamental en la industria automotriz por diferentes razones: 1) entender si se cumple con un objetivo de confiabilidad, 2) comparar entre diseños alternativos, o 3) evaluar mejoras de confiabilidad. La predicción de confiabilidad queda definida por el cálculo de la taza de falla de todos los componentes electrónicos que constituyen un sistema/producto. En el campo automotriz existen diferentes guías diseñadas para la predicción de confiabilidad de componentes electrónicos, donde el estándar Siemens SN 29500 es bien aceptado en la industria automotriz. Sin embargo, el estándar Siemens SN 29500, así como otros estándares, da las bases para el cálculo de la taza de falla asumiendo condiciones ambientales constantes, pero no muestra un proceso paso a paso cuando el producto opera en el campo bajo diferentes condiciones ambientales. De esta manera, en este artículo se presenta un proceso paso a paso, para el entendimiento de la implementación del estándar Siemens SN 29500, cuando las condiciones ambientales no son constantes, para obtener un valor de taza de falla/confiabilidad de un producto, siguiendo una aplicación electrónica automotriz.
Reliability prediction for electronic products is a fundamental activity for automotive industry for several reasons: 1) understanding if a reliability goal is met, 2) comparing among alternative designs, or 3) evaluating reliability improvements. Reliability prediction is defined by the computation of the failure rates of all system/product electronic components. In the automotive field there are several guides designed for reliability prediction of electronic components, where the Siemens SN 29500 is well accepted by automotive industry. However, the Siemens SN 29500 standard, as well as other standards, gives the basis for failure rate calculation assuming constant environmental conditions, but not a step-by-step process when products are operating under different environments during their field life. Thus, in this article we present a step-by-step process to fully understand the implementation of the Siemens SN 29500 standard, when environment is not constant to obtain the failure rate/reliability value of a product, following an automotive electronic application.
Referencias
[1] He, Y., Zhang, H., Wang, P., Huang, Y., Chen Z., and Zhang, Y., Engineering application research on reliability prediction of the combined DC-DC power supply, Microelectronics reliability, 118(114049), pp. 1-7, 2021. DOI: https://doi.org/10.1016/j.microrel.2021.114059
[2] Pandian, G.P., Das, D., Li, C., Zio E., and Pecht, M., A critique of reliability prediction techniques for avionics applications, Chinese Journal of Aeronautics, 31(1), pp. 10-20, 2018. DOI: https://doi.org/10.1016/j.cja.2017.11.004
[3] Schuderer, J., Buhler R., and Delince, F., Reliability prediction of a 30 kW power electronics converter, Microelectronics Reliability, 150(115083), pp. 1-7, 2023. DOI: https://doi.org/10.1016/j.microrel.2023.115083
[4] Brissaud, F., Charpentier, D., Fouladirad, M., Barros, A., and Berenguer, C., Failure rate evaluation with influencing factors, Journal of Loss Prevention in the Process Industries, 23(2), pp. 187-193, 2010. DOI: https://doi.org/10.1016/j.jlp.2009.07.013
[5] Butnicu, D., A review of failure rate calculation's differences due to package for IEC-TR-62380 vs other prediction standards, in International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, Romania, 2021, pp. 250-253. DOI: https://doi.org/10.1109/SIITME53254.2021.9663584
[6] Siemens SN 29500 standard, 2016-11 ed.
[7] ISO 26262 standard, 2018-12 ed.
[8] Krini, O., and Borcsok, J., Tool to derive and calculate safety parameter, in:_ XXIV International Conference on Information, Communication and Automation Technologies (IACT), Sarajevo, Bosnia and Herzegovina, 2013, pp. 1-7. DOI: https://doi.org/10.1109/ICAT.2013.6684061
[9] Butnicu, D., POL DV-DC converter output capacitor bank's reliability comparison using prediction standard MIL-HDBK-217F and SN 29500, in: IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, Romania, 2021, pp. 169-172. DOI: https://doi.org/10.1109/SIITME53254.2021.9663431
[10] Borcsok, J., and Holub, P., A possible approach to determining safety parameters for safety integrated circuits, in: XXIV International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 2013, pp. 1-8. DOI: https://doi.org/10.1109/ICAT.2013.6684062
[11] Vishay Semiconductors, "Vishay - Reliability," [Online], 2008. [Accessed 03 May 2024] Available at: https://www.vishay.com/docs/80099/reliabil.pdf.
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 DYNA
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.