(a) SEM image of M2 tool steel powders, (b) detail of particles in M2 tool steel

Publicado

2025-10-17

Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication

Impacto de las estrategias de impresión y de la atmósfera de despolimerización térmica en la microestructura y las propiedades mecánicas del acero de herramientas M2 producido mediante fabricación por fusión de filamentos

DOI:

https://doi.org/10.15446/dyna.v92n239.115773

Palabras clave:

despolimerizado térmico, manufactura aditiva, acero M2 (es)
thermal debinding, additive manufacturing, M2 steel (en)

Descargas

Autores/as

  • Theylor Andres Amaya-Villabon Universidad Nacional de Colombia – Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Mecánica y Mecatrónica, Grupo de Investigación AFIS, Laboratorio de Fundición y Pulvimetalurgia, Bogotá, Colombia image/svg+xml https://orcid.org/0009-0004-4871-8780
  • Andres Fernando Gil-Plazas SENA, Centro de Materiales y Ensayos - Regional Distrito Capital, Grupo de Investigación GIMES, Bogotá, Colombia https://orcid.org/0000-0001-6585-9121
  • Julián David Rubiano-Buitrago Universidad Nacional de Colombia – Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Mecánica y Mecatrónica, Grupo de Investigación AFIS, Laboratorio de Fundición y Pulvimetalurgia, Bogotá, Colombia image/svg+xml https://orcid.org/0000-0003-3491-8373
  • Liz Karen Herrera-Quintero Universidad Nacional de Colombia – Sede Bogotá, Facultad de Ingeniería, Departamento de Ingeniería Mecánica y Mecatrónica, Grupo de Investigación AFIS, Laboratorio de Fundición y Pulvimetalurgia, Bogotá, Colombia image/svg+xml https://orcid.org/0000-0003-2002-4336

Esta investigación indaga el efecto de la estrategia de impresión y de la atmósfera de despolimerizado térmico en la microestructura y las propiedades mecánicas de muestras de acero M2 obtenido mediante fabricación con filamento fundido. Se realizó un análisis comparativo entre patrones de impresión concéntricos y lineales. Las muestras impresas se sometieron a diferentes velocidades de despolimerizado térmico en atmósferas de nitrógeno y vacío para evaluar sus efectos sobre las propiedades mecánicas, como la microdureza y la resistencia a la ruptura transversal (TRS). La evaluación de los resultados mostró una correlación continua entre la microestructura y las propiedades mecánicas, confirmada mediante metalografía y pruebas estadísticas ANOVA. El estudio concluyó que una atmósfera de nitrógeno mejora la densificación y la resistencia mecánica al retener un mayor contenido de carbono; mientras que una atmósfera de vacío aumenta la porosidad y reduce la resistencia. Estos hallazgos ofrecen información valiosa para optimizar los procesos de sinterización para mejorar las propiedades de los materiales.

This research investigates the effects of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel samples obtained by Fused Filament Fabrication. A comparative analysis was conducted between concentric and linear printing patterns. Printed samples were subjected to different thermal debinding heating rates in nitrogen and vacuum atmospheres to evaluate their effects on mechanical properties, such as microhardness and Transverse Rupture Strength (TRS). The assessment of the results showed a consistent correlation between microstructure and mechanical properties, confirmed by metallography and ANOVA statistical test studies. The study concluded that a nitrogen atmosphere enhances densification and strength by retaining higher carbon content, whereas a vacuum atmosphere leads to increased porosity and reduced strength. Finally, these findings offer valuable insights for optimizing sintering processes to improve material properties.

Referencias

[1] Zhou, L., et al., Additive manufacturing: a comprehensive review sensor. Multidisciplinary Digital Publishing Institute (MDPI), 24(9), art. 2668, 2024. DOI: https://doi.org/10.3390/s24092668

[2] Imran, M.M., Che-Idris, A., De-Silva, L.C., Kim, Y.B., and Abas, P.E., Advancements in 3D printing: directed energy deposition techniques, defect analysis, and quality monitoring. Technologies (Basel), 12(6), art. 0086, 2024. DOI: https://doi.org/10.3390/technologies12060086

[3] Shah, A., Aliyev, R., Zeidler, H., and Krinke, S., A review of the recent developments and challenges in wire arc additive manufacturing (WAAM) process. Journal of Manufacturing and Materials Processing, 7(3), art. 0097, 2023. DOI: https://doi.org/10.3390/jmmp7030097

[4] Ghanadi, N., and Pasebani, S., A review on wire-laser directed energy deposition: parameter control, process stability, and future research paths. Journal of Manufacturing and Materials Processing, Multidisciplinary Digital Publishing Institute (MDPI), 8(2), art. 0084, 2024. DOI: https://doi.org/10.3390/jmmp8020084

[5] Gong, X., Anderson, T., and Chou, K., Review on powder-based electron beam additive manufacturing technology. Manufacturing Review, EDP Sciences, (1), art. 4001, 2014. DOI: https://doi.org/10.1051/mfreview/2014001

[6] Li, Z., et al., High deposition rate powder-and wire-based laser directed energy deposition of metallic materials: a review. International Journal of Machine Tools and Manufacture, (181), art. 103942, 2022. DOI: https://doi.org/10.1016/j.ijmachtools.2022.103942

[7] Jorge, V.L., Teixeira, F.R., Wessman, S., Scotti, A., and Henke, S.L., The impact of multiple thermal cycles using CMT® on microstructure evolution in WAAM of Thin walls made of AlMg5. Metals (Basel), 14(6), art. 0717, 2024. DOI: https://doi.org/10.3390/met14060717

[8] Heo, S., Lim, Y., Kwak, N., Jeon, C., Choi, M., and Jo, I., Impact of heat treatment and building direction on tensile properties and fracture mechanism of Inconel 718 produced by SLM process. Metals (Basel), 14(4), art. 0440, 2024. DOI: https://doi.org/10.3390/met14040440

[9] Honu, E., Emanet, S., Chen, Y., Zeng, C., and Mensah, P., Effects of low-temperature heat treatment on mechanical and thermophysical properties of Cu-10Sn alloys fabricated by laser powder bed fusion. Materials, 17(12), art. 2943, 2024. DOI: https://doi.org/10.3390/ma17122943

[10] Banerjee, S., and Joens, C.J., Debinding and sintering of metal injection molding (MIM) components. Handbook of Metal Injection Molding, pp. 133–180, 2012. DOI: https://doi.org/10.1533/9780857096234.1.133

[11] Kukla, C., Duretek, I., Schuschnigg, S., Gonzalez-Gutierrez, J., and Holzer, C., Properties for PIM feedstocks used in fused filament fabrication. World PM 2016 Congress and Exhibition, 2016.

[12] Kukla, C., Gonzalez-Gutierrez, J., Cano, S., and Hampel, S., Fused filament fabrication (FFF) of PIM feedstocks. Proceedings of VI Congreso Nacional de Pulvimetalurgia y I Congreso Iberoamericano de Pulvimetalurgia, 2017.

[13] Cano, S., et al., Additive manufacturing of Zirconia parts by fused filament fabrication and solvent debinding: selection of binder formulation. Additive Manufacturing, 26(11), pp. 117–128, 2019. DOI: https://doi.org/10.1016/j.addma.2019.01.001

[14] Tirado-González, J.G., Esguerra-Arce, J., Esguerra-Arce, A., and Herrera-Quintero, L.K., 3D printing Iron/Iron oxide composites by metal material extrusion from an industrial waste. JOM, 76(4), pp. 1924–1936, 2024. DOI: https://doi.org/10.1007/s11837-024-06371-2

[15] Gil-Plazas, A.F., Villamil Galindo, A.D., Rubiano Buitrago, J.D., Viloria Estrada, A., y Herrera-Quintero, L.K., La industria 4.0 en tu casa: impresión de prototipos de herramientas de punzonado para trabajo en caliente con impresoras de modelado por deposición fundida de bajo coste. Reto, pp. 23–35, 2021. DOI: https://doi.org/10.23850/reto.v9i1.4172

[16] Gil-Plazas, A.F., Rubiano-Buitrago, J.D., Boyacá-Mendivelso, L.A., and Herrera-Quintero, L.K., Solid-state and super solidus liquid phase sintering of 4340 Steel SLM powders shaped by fused filament fabrication. Revista Facultad de Ingeniería, 31(60), art. 13913, 2022. DOI: https://doi.org/10.19053/01211129.v31.n60.2022.13913

[17] Rubiano-Buitrago, J.D., Gil-Plazas, A.F., Boyacá-Mendivelso, L.A., and Herrera-Quintero, L.K., Fused filament fabrication of WC-10Co Hardmetals: a study on binder formulations and printing variables. Journal of Manufacturing and Materials Processing, 8(3), art. 30118, 2024 DOI: https://doi.org/10.3390/jmmp8030118

[18] Costa, J.M., Sequeiros, E.W., and Vieira, M.F., Fused filament fabrication for metallic materials: a brief review. Materials, Multidisciplinary Digital Publishing Institute (MDPI), 16(24), art. 7505, 2023. DOI: https://doi.org/10.3390/ma16247505

[19] Myers, N.S., and Heaney, D.F., Metal Injection Molding (MIM) of high-speed tool steels. Handbook of Metal Injection Molding, pp. 516–525, 2012. DOI: https://doi.org/10.1533/9780857096234.4.516

[20] Naranjo, J.A, Berges, C., Gallego, A., and Herranz, G., A novel printable high-speed steel filament: Towards the Solution for wear-resistant customized tools by AM alternative. Journal of Materials Research and Technology, 11(3), pp. 1534–1547, 2021. DOI: https://doi.org/10.1016/j.jmrt.2021.02.001

[21] Thompson, Y., Gonzalez-Gutierrez, J., Kukla, C., and Felfer, P., Fused filament fabrication, debinding and sintering as a low-cost additive manufacturing method of 316L stainless steel. Additive Manufacturing, 30(5), art. 100861, 2019. DOI: https://doi.org/10.1016/j.addma.2019.100861.

[22] Gonzalez-Gutierrez, J., Arbeiter, F., Schlauf, T., Kukla, C., and Holzer, C., Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing. Materials letters, (248), pp. 165–168, 2019. DOI: https://doi.org/10.1016/j.matlet.2019.04.024

[23] Gonzalez-Gutierrez, J., Kukla, C., Schuschnigg, S., Duretek, I., and Holzer, C., Fused Filament Fabrication for Metallic Parts. 2016.

[24] Abel, J., et al., Fused Filament Fabrication (FFF) of metal-ceramic components. Journal of Visualized Experiments, 2019(143), pp. 1–13, 2019. DOI: https://doi.org/10.3791/57693

[25] Kukla, C., Gonzalez-Gutierrez, J., Burkhardt, C., Weber, O., and Holzer, C., The production of magnets by FFF-Fused Filament Fabrication. Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, 2017.

[26] Gonzalez-Gutierrez, J., Godec, D., Kukla, C., Schlauf, T., Burkhardt, C., and Holzer, C., Shaping, debinding and sintering of steel components via fused filament fabrication. 16th International Scientific Conference on Production Engineering - CIM2017, 2017.

[27] Lengauer, W., et al., Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. International Journal of Refractory Metals and Hard Materials, 82(2), pp. 141–149, 2019. DOI: https://doi.org/10.1016/j.ijrmhm.2019.04.011.

[28] German, R.M., Suri, P., and Park, S.J., Review: liquid phase sintering. Journal of Materials Science, 44(1), pp. 1–39, 2009. DOI: https://doi.org/10.1007/s10853-008-3008-0.

[29] German, R.M., Densification of prealloyed tool steel powders: sintering model. International Journal of Powder Metallurgy, pp. 49–61, 1986.

[30] German, R.M., Computer model for the sintering densification of injected molded M2 tool steel. International Journal of Powder Metallurgy, pp. 57–67, 1999.

[31] German, R.M., Liquid phase sintering. Ed. Tongfang CNKI Technology Co., Ltd. Beijing. China, 1985. DOI: https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004

[32] Herranz, G., Control of carbon content in metal injection molding (MIM). En: Handbook of Metal Injection Molding, Ed. Elsevier Inc., 2012, pp. 265–304. DOI: https://doi.org/10.1533/9780857096234.2.265.

Cómo citar

IEEE

[1]
T. A. Amaya-Villabon, A. F. Gil-Plazas, J. D. Rubiano-Buitrago, y L. K. Herrera-Quintero, «Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication», DYNA, vol. 92, n.º 239, pp. 9–18, oct. 2025.

ACM

[1]
Amaya-Villabon, T.A., Gil-Plazas, A.F., Rubiano-Buitrago, J.D. y Herrera-Quintero, L.K. 2025. Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication. DYNA. 92, 239 (oct. 2025), 9–18. DOI:https://doi.org/10.15446/dyna.v92n239.115773.

ACS

(1)
Amaya-Villabon, T. A.; Gil-Plazas, A. F.; Rubiano-Buitrago, J. D.; Herrera-Quintero, L. K. Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication. DYNA 2025, 92, 9-18.

APA

Amaya-Villabon, T. A., Gil-Plazas, A. F., Rubiano-Buitrago, J. D. & Herrera-Quintero, L. K. (2025). Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication. DYNA, 92(239), 9–18. https://doi.org/10.15446/dyna.v92n239.115773

ABNT

AMAYA-VILLABON, T. A.; GIL-PLAZAS, A. F.; RUBIANO-BUITRAGO, J. D.; HERRERA-QUINTERO, L. K. Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication. DYNA, [S. l.], v. 92, n. 239, p. 9–18, 2025. DOI: 10.15446/dyna.v92n239.115773. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/115773. Acesso em: 28 dic. 2025.

Chicago

Amaya-Villabon, Theylor Andres, Andres Fernando Gil-Plazas, Julián David Rubiano-Buitrago, y Liz Karen Herrera-Quintero. 2025. «Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication». DYNA 92 (239):9-18. https://doi.org/10.15446/dyna.v92n239.115773.

Harvard

Amaya-Villabon, T. A., Gil-Plazas, A. F., Rubiano-Buitrago, J. D. y Herrera-Quintero, L. K. (2025) «Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication», DYNA, 92(239), pp. 9–18. doi: 10.15446/dyna.v92n239.115773.

MLA

Amaya-Villabon, T. A., A. F. Gil-Plazas, J. D. Rubiano-Buitrago, y L. K. Herrera-Quintero. «Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication». DYNA, vol. 92, n.º 239, octubre de 2025, pp. 9-18, doi:10.15446/dyna.v92n239.115773.

Turabian

Amaya-Villabon, Theylor Andres, Andres Fernando Gil-Plazas, Julián David Rubiano-Buitrago, y Liz Karen Herrera-Quintero. «Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication». DYNA 92, no. 239 (octubre 17, 2025): 9–18. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/115773.

Vancouver

1.
Amaya-Villabon TA, Gil-Plazas AF, Rubiano-Buitrago JD, Herrera-Quintero LK. Impact of printing strategies and thermal debinding atmosphere on the microstructure and mechanical properties of M2 tool steel produced via fused filament fabrication. DYNA [Internet]. 17 de octubre de 2025 [citado 28 de diciembre de 2025];92(239):9-18. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/115773

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

335

Descargas

Los datos de descargas todavía no están disponibles.