Stabilizer and CubeSat System Assembly

Publicado

2024-12-05

Electromechanical flight stabilization system for CubeSat nanosatellites

Sistema electromecánico de estabilización de vuelo para nanosatélites CubeSat

DOI:

https://doi.org/10.15446/dyna.v91n234.115957

Palabras clave:

fuzzy control, simulation, virtual reality, electromechanical stabilization system, LEO orbit (en)
control difuso, simulación, realidad virtual, sistema electromecánico de estabilización, órbita LEO (es)

Descargas

Autores/as

The objective of the research was to design and simulate a stabilization system for attitude control of CubeSat nanosatellites in LEO orbit. The electronic system was inside the mechanical system, designed in Proteus. The mechanical system was designed in SolidWorks, then a CubeSat 3U CAD was downloaded for simulation and finally, all CAD designs were assembled. These data were used for the analysis of the spatial environmental perturbations of aerodynamic drag, gradient, gravity and magnetic field.  Attitude representation was done by analyzing the Euler, Poisson and Quaternions equations. Then, a fuzzy logic control was created with two cases for automatic control. The analysis and virtual reality simulation revealed the correct attitude control on the CubeSat 3U nanosatellite, considering the perturbations of the space environment and a new 25° orientation of each axis.

El objetivo de la investigación fue diseñar y simular un sistema de estabilización para el control de actitud de nanosatélites tipo CubeSat en la órbita LEO. El sistema electrónico estaba dentro del sistema mecánico, diseñado en Proteus. El sistema mecánico se diseñó en SolidWorks, luego se bajó un CubeSat 3U CAD para la simulación y finalmente, se ensamblaron todos los diseños CAD. Estos datos se utilizaron para el análisis de las perturbaciones ambientales espaciales de arrastre aerodinámico, gradiente, campo gravitatorio y magnético.  La representación de la actitud se hizo mediante el análisis de las ecuaciones de Euler, Poisson y Quaternions. A continuación, se creó un control de lógica difusa con dos casos para el control automático. El análisis y la simulación de realidad virtual revelaron el correcto control de actitud en el nanosatélite CubeSat 3U, considerando las perturbaciones del entorno espacial y una nueva orientación de 25° de cada eje.

Referencias

[1] Maral, G., Michel, B., and Zhili, S., Satellite communications systems: systems, techniques and technology, John Wiley & Sons, Hoboken, NJ, USA, 2020. DOI: https://doi.org/10.1002/9781119673811

[2] Fourati, F., and Alouini, M.S., Artificial intelligence for satellite communication: a review. Intelligent and Converged Networks, 2(3), pp. 213-243. 2021. DOI: https://doi.org/10.23919/ICN.2021.0015

[3] Kodheli, O., Lagunas, E., Maturo, N., Sharma, S.K., Shankar, B., Montoya, J.F.M., and Goussetis, G., Satellite communications in the new space era: a survey and future challenges. IEEE Communications Surveys & Tutorials, 23(1), pp. 70-109, 2020. DOI: https://doi.org/10.1109/COMST.2020.3028247.

[4] Prol, F.S., Ferre, R.M., Saleem, Z., Välisuo, P., Pinell, C., Lohan, E. S., ... and Kuusniemi, H., Position, navigation, and timing (PNT) through low earth orbit (LEO) satellites: a survey on current status, challenges, and opportunities. IEEE Access, 10, pp. 83971–84002. 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3194050

[5] Malisuwan, S., and Kanchanarat, B., Small satellites for low-cost space access: launch, deployment, integration, and in-space logistics. American Journal of Industrial and Business Management, 12(10), pp. 1480-1497, 2022. DOI: https://doi.org/10.4236/ajibm.2022.1210082

[6] Murugan, P., and Agrawal, Y., Small satellites applications, classification and technologies. International Journal of Science and Research (IJSR), 9(7), pp. 1682-1687, 2020. DOI: https://doi.org/10.21275/SR20723213825

[7] İnce, F., Nano and micro satellites as the pillar of the “new space” paradigm. Journal of Aeronautics and Space Technologies, [online]. 13(2), pp. 235-250, 2020. Available at: https://jast.hho.msu.edu.tr/index.php/JAST/article/view/420

[8] Saeed, N., Elzanaty, A., Almorad, H., Dahrouj, H., Al-Naffouri, T.Y., and Alouini, M.S., CubeSat communications: recent advances and future challenges. IEEE Communications Surveys & Tutorials, 22(3), pp. 1839-1862, 2020. DOI: https://doi.org/10.1109/COMST.2020.2990499.

[9] Freire, F., Shilenkov, Е., Titenko, E., Frolov, S., and Shitov, A., Mathematical model of the earth's magnetic anomalies. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, [online]. 43(S1), pp. 35-39, 2020. Available at: https://produccioncientificaluz.org/index.php/tecnica/article/view/31066/47095

[10] Wailand, A., and Bauer, R., Investigation of gain tuning and sensor noise for CubeSat B-dot detumbling and 3-axis PD magnetic attitude control, Proceedings of the Canadian Society for Mechanical Engineering International Congress, [online]. 2020. Available at: https://library.upei.ca/islandora/object/csme2020%3A31/datastream/PDF/download/csme2020%3A31.pdf

[11] Gaber, K., El Mashade, M.B., and Aziz, G.A.A., A hardware implementation of flexible attitude determination and control system for two-axis-stabilized cubesat. Journal of Electrical Engineering & Technology, 15, pp. 869-882, 2020. DOI: https://doi.org/10.1007/s42835-020-00352-6

[12] Yang, Y., Spacecraft modeling, attitude determination, and control: quaternion-based approach, Rockville, Maryland, USA: CRC Press, 2019.

[13] Wang, Z., Smart attitude control system for small satellites, Doctoral dissertation, Faculty of Engineering, School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Australia, 2022. Available at: https://hdl.handle.net/2123/29905

[14] Shehzad, M.F., Asghar, A.B., Jaffery, M.H., Naveed, K., and Čonka, Z., Neuro-fuzzy system based proportional derivative gain optimized attitude control of CubeSat under LEO perturbations, Heliyon, 9(10), art. 20434, 2023. DOI: https://doi.org/10.1016/j.heliyon.2023.e20434

[15] Gordon, R., Worrall, K., and Ceriotti, M., Attitude control of a nanosatellite using inverse simulation, Proceedings of 72nd International Astronautical Congress 2021, pp. 833-847. Attitude Control of a Nanosatellite using Inverse Simulation. In: 72nd International Astronautical Congress 2021, Dubai, United Arab Emirates, 25-29 Oct 2021, pp. 833-847.

[16] Liu, H.L., Wu, Y.S., Wan, L.C., Pan, S.J., Qin, S.J., Gao, F., and Wen, Q.Y., Variational quantum algorithm for the Poisson equation. Physical Review A, 104(2), art. 022418, 2021. DOI: https://doi.org/10.1103/PhysRevA.104.022418

[17] Krishna, A.B., Sen, A., and Kothari, M., Super twisting algorithm for robust geometric control of a helicopter. Journal of Intelligent & Robotic Systems, 102 art. 61, 2021. DOI: https://doi.org/10.1007/s10846-021-01366-6

Cómo citar

IEEE

[1]
F. R. Freire y K. E. Mora, «Electromechanical flight stabilization system for CubeSat nanosatellites», DYNA, vol. 91, n.º 234, pp. 100–106, oct. 2024.

ACM

[1]
Freire, F.R. y Mora, K.E. 2024. Electromechanical flight stabilization system for CubeSat nanosatellites. DYNA. 91, 234 (oct. 2024), 100–106. DOI:https://doi.org/10.15446/dyna.v91n234.115957.

ACS

(1)
Freire, F. R.; Mora, K. E. Electromechanical flight stabilization system for CubeSat nanosatellites. DYNA 2024, 91, 100-106.

APA

Freire, F. R. y Mora, K. E. (2024). Electromechanical flight stabilization system for CubeSat nanosatellites. DYNA, 91(234), 100–106. https://doi.org/10.15446/dyna.v91n234.115957

ABNT

FREIRE, F. R.; MORA, K. E. Electromechanical flight stabilization system for CubeSat nanosatellites. DYNA, [S. l.], v. 91, n. 234, p. 100–106, 2024. DOI: 10.15446/dyna.v91n234.115957. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/115957. Acesso em: 29 mar. 2025.

Chicago

Freire, Fausto R., y Karla E. Mora. 2024. «Electromechanical flight stabilization system for CubeSat nanosatellites». DYNA 91 (234):100-106. https://doi.org/10.15446/dyna.v91n234.115957.

Harvard

Freire, F. R. y Mora, K. E. (2024) «Electromechanical flight stabilization system for CubeSat nanosatellites», DYNA, 91(234), pp. 100–106. doi: 10.15446/dyna.v91n234.115957.

MLA

Freire, F. R., y K. E. Mora. «Electromechanical flight stabilization system for CubeSat nanosatellites». DYNA, vol. 91, n.º 234, octubre de 2024, pp. 100-6, doi:10.15446/dyna.v91n234.115957.

Turabian

Freire, Fausto R., y Karla E. Mora. «Electromechanical flight stabilization system for CubeSat nanosatellites». DYNA 91, no. 234 (octubre 22, 2024): 100–106. Accedido marzo 29, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/115957.

Vancouver

1.
Freire FR, Mora KE. Electromechanical flight stabilization system for CubeSat nanosatellites. DYNA [Internet]. 22 de octubre de 2024 [citado 29 de marzo de 2025];91(234):100-6. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/115957

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

107

Descargas