Publicado
Emerging trends in Retail analytics: a bibliometric analysis of the last decade
Tendencias emergentes en la analítica del Retail: un análisis bibliométrico de la última década
DOI:
https://doi.org/10.15446/dyna.v92n237.116880Palabras clave:
Retail analytics, Artificial Intelligence, machine learning, research profile, tech mining, text analysis (en)Retail analytics, Inteligencia Artificial, aprendizaje de máquinas, perfil investigativo, minería de tecnología, análisis de texto (es)
Descargas
Retail analytics has become a transformative force, leveraging data-driven insights to optimize operations, personalize customer experiences, forecast demand, and enhance supply chain efficiency. This study provides a comprehensive bibliometric analysis of 563 documents indexed in Scopus, profiling the evolution of retail analytics over the past ten years. Key findings include 131 emerging topics clustered into 13 core trends. The analysis highlights the growing application of artificial intelligence, machine learning, and big data to drive decision-making, improve profitability, and enhance competitiveness in the retail industry. This paper addresses critical questions of "what," "where," "when," and "who" in retail analytics research, identifying areas of innovation and future growth, especially in predictive analytics, customer insights, and business operations optimization.
La analítica del retail se ha convertido en una fuerza transformadora que aprovecha los conocimientos basados en datos para optimizar las operaciones, personalizar las experiencias de los clientes, pronosticar la demanda y mejorar la eficiencia de la cadena de suministro. Este estudio proporciona un análisis bibliométrico exhaustivo de 563 documentos indexados en Scopus, que perfilan la evolución de la analítica del comercio minorista en los últimos diez años. Los hallazgos clave incluyen 131 temas emergentes agrupados en 13 tendencias centrales. El análisis destaca la creciente aplicación de la inteligencia artificial, el aprendizaje automático y el big data para impulsar la toma de decisiones, mejorar la rentabilidad y mejorar la competitividad en la industria minorista. Este documento aborda preguntas críticas de "qué", "dónde", "cuándo" y "quién" en la investigación de la analítica del comercio minorista, identificando áreas de innovación y crecimiento futuro, especialmente en análisis predictivos, conocimientos del cliente y optimización de las operaciones comerciales.
Referencias
[1] Arefin , S. et al., Retail Industry Analytics: unraveling consumer behavior through RFM segmentation and machine learning, in 2024 IEEE International Conference on Electro Information Technology (eIT), IEEE, 2024, pp. 545–551. DOI: https://doi.org/10.1109/eIT60633.2024.10609927
[2] Verma, N., and Singh, J., A comprehensive review from sequential association computing to Hadoop-MapReduce parallel computing in a retail scenario, Journal of Management Analytics, 4(4), pp. 359–392, 2017. DOI: https://doi.org/10.1080/23270012.2017.1373261.
[3] Pitkin, J., Manolopoulou, I., and Ross, G., Bayesian hierarchical modelling of sparse count processes in retail analytics, Annals of Applied Statistics, 18(2), pp. 946–965, 2024. DOI: https://doi.org/10.1214/23-AOAS1811.
[4] Schultz, D., and Block, M.P., Fusing complex big data sets to understand consumer’s online relationships that create In-Store retail bonding: an abstract, in developments in Marketing Science: Proceedings of the Academy of Marketing Science, 2019, 169 P. DOI: https://doi.org/10.1007/978-3-030-02568-7_48.
[5] Pitkin, J., Ross, G., and Manolopoulou, I., Dirichlet process mixtures of order statistics with applications to retail analytics, Journal of the Royal Statistical Society. Series C: Applied Statistics, 68(1), pp. 3–28, 2019. DOI: https://doi.org/10.1111/rssc.12296.
[6] Bilgic, E., Cakir, O., Kantardzic, M., Duan, Y., and Cao, G., Retail analytics: store segmentation using Rule-Based Purchasing behavior analysis, International Review of Retail, Distribution and Consumer Research, 31(4), pp. 457–480, 2021. DOI: https://doi.org/10.1080/09593969.2021.1915847.
[7] Aversa, J., Azmy, A., and Hernandez, T., Untapping the potential of mobile location data: the opportunities and challenges for retail analytics, Journal of Retailing and Consumer Services, 81, art. 103993, 2024. DOI: https://doi.org/10.1016/j.jretconser.2024.103993
[8] Becker, J., Müller, K., Cordes, A.-K., Hartmann, P., and Von Lojewski, L., Development of a conceptual framework for machine learning applications in brick-and-mortar stores, presented at the Proceedings of the 15th International Conference on Business Information Systems 2020 Developments, Opportunities and Challenges of Digitization, WIRTSCHAFTSINFORMATIK 2020, 2020. DOI: https://doi.org/10.30844/wi_2020_c2.
[9] Jose, J.A.C. et al., Smart shelf system for customer behavior tracking in supermarkets, Sensors, 24(2), 2024. DOI: https://doi.org/10.3390/s24020367.
[10] Subramani, K., Building a strategic framework for retail supply chain analytics, in Handbook of Research on Strategic Supply Chain Management in the Retail Industry, 2016, pp. 216–232. DOI: https://doi.org/10.4018/978-1-4666-9894-9.ch012.
[11] Gregorczuk, H., Retail analytics: smart-stores saving bricks- and-mortar retail or a privacy problem?. Law, Technology and Humans, 4(1), pp. 63–78, 2022. DOI: https://doi.org/10.5204/lthj.2088.
[12] Aria, M., and Cuccurullo, C., Bibliometrix: an R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4), pp. 959–975, 2017. DOI: https://doi.org/10.1016/j.joi.2017.08.007.
[13] Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., and Lim, W.M., How to conduct a bibliometric analysis: an overview and guidelines, Journal of Business Research, 133, pp. 285–296, 2021. DOI: https://doi.org/10.1016/j.jbusres.2021.04.070.
[14] Porter, A.L., Garner, J., Carley, S.F., and Newman, N.C., Emergence scoring to identify frontier R&D topics and key players, Technological Forecasting and Social Change, 146, pp. 628–643, 2019. DOI: https://doi.org/10.1016/j.techfore.2018.04.016.
[15] Garner, J., Carley, S., Porter, A.L., and Newman, N.C., Technological emergence indicators using emergence scoring, in 2017 Portland international conference on management of engineering and technology (PICMET), IEEE, 2017, pp. 1–12. DOI: https://doi.org/10.23919/PICMET.2017.8125288
[16] Huber, J., and Stuckenschmidt, H., Daily retail demand forecasting using machine learning with emphasis on calendric special days, International Journal of Forecasting, 36(4), pp. 1420–1438, 2020. DOI: https://doi.org/10.1016/j.ijforecast.2020.02.005.
[17] Pillai, R., Sivathanu, B., and Dwivedi, Y.K., Shopping intention at AI-powered automated retail stores (AIPARS), Journal of Retailing and Consumer Services, 57, art. 102207, 2020. DOI: https://doi.org/10.1016/j.jretconser.2020.102207.
[18] Weber, F.D., and Schütte, R., State-of-the-art and adoption of artificial intelligence in retailing, Digital Policy, Regulation and Governance, 21(3), pp. 264–279, 2019. DOI: https://doi.org/10.1108/DPRG-09-2018-0050.
[19] Gawankar, S.A., Gunasekaran, A., and Kamble, S., A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context, International Journal of Production Research, 58(5), pp. 1574–1593, 2020. DOI: https://doi.org/10.1080/00207543.2019.1668070.
[20] Bertacchini, F., Bilotta, E., and Pantano, P., Shopping with a robotic companion, Computers in Human Behavior, 77, pp. 382–395, 2017. DOI: https://doi.org/10.1016/j.chb.2017.02.064.
[21] Chopra, K., Indian shopper motivation to use artificial intelligence: generating Vroom’s expectancy theory of motivation using grounded theory approach, International Journal of Retail and Distribution Management, 47(3), pp. 331–347, 2019. DOI: https://doi.org/10.1108/IJRDM-11-2018-0251.
[22] Hofmann, E., and Rutschmann, E., Big data analytics and demand forecasting in supply chains: a conceptual analysis, International Journal of Logistics Management, 29(2), pp. 739–766, 2018. DOI: https://doi.org/10.1108/IJLM-04-2017-0088.
[23] Sung, E.C., Bae, S., Han, D.-I.D., and Kwon, O., Consumer engagement via interactive artificial intelligence and mixed reality, International Journal of Information Management, 60, 2021. DOI: https://doi.org/10.1016/j.ijinfomgt.2021.102382.
[24] Lutfi, A. et al., Drivers and impact of big data analytic adoption in the retail industry: a quantitative investigation applying structural equation modeling, Journal of Retailing and Consumer Services, 70, art. 103129, 2023. DOI: https://doi.org/10.1016/j.jretconser.2022.103129.
[25] Griva, A., Bardaki, C., Pramatari, K., and Papakiriakopoulos, D., Retail business analytics: customer visit segmentation using market basket data, Expert Systems with Applications, 100, pp. 1–16, 2018. DOI: https://doi.org/10.1016/j.eswa.2018.01.029.
[26] Dehghanpour, K., Hashem-Nehrir, M., Sheppard, J.W., and Kelly, N.C., Agent-based modeling of retail electrical energy markets with demand response, IEEE Transactions on Smart Grid, 9(4), pp. 3465–3475, 2018. DOI: https://doi.org/10.1109/TSG.2016.2631453.
[27] Ma, S., and Fildes, R., Retail sales forecasting with meta-learning, European Journal of Operational Research, 288(1), pp. 111–128, 2021. DOI: https://doi.org/10.1016/j.ejor.2020.05.038.
[28] Har, L.L., Rashid, U.K., Chuan, L.T., Sen, S.C., and Xia, L.Y., Revolution of retail industry: from perspective of Retail 1.0 to 4.0, presented at the Procedia Computer Science, 2022, pp. 1615–1625. DOI: https://doi.org/10.1016/j.procs.2022.01.362.
[29] Cao, L., Artificial intelligence in retail: applications and value creation logics, International Journal of Retail and Distribution Management, 49(7), pp. 958–976, 2021. DOI: https://doi.org/10.1108/IJRDM-09-2020-0350.
[30] Pierdicca, R., Liciotti, D., Contigiani, M., Frontoni, E., Mancini, A., and Zingaretti, P., Low cost embedded system for increasing retail environment intelligence, presented at the 2015 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2015, 2015. DOI: https://doi.org/10.1109/ICMEW.2015.7169771.
[31] Aversa, J., Hernandez, T., and Doherty, S., Incorporating big data within retail organizations: a case study approach, Journal of Retailing and Consumer Services, 60, 2021. DOI: https://doi.org/10.1016/j.jretconser.2021.102447.
[32] Bharadwaj, A.A., and Gunasekaran, M., Analysis of demand forecasting trends using hybrid regression model in comparison with seasonal autoregressive integrated moving average with eXogenous factors model, in 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), IEEE, 2024, pp. 1–6. DOI: https://doi.org/10.1109/ICONSTEM60960.2024.10568699
[33] Alekhyasri, N.N., Prasad, G.B., Pardhasaradhi, T., Reddy, A.P.V., and Bhargavi, M., Predictive analysis for retail: sales forecasting at Walmart, in 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), IEEE, 2024, pp. 1018–1022. DOI: https://doi.org/10.1109/ICAAIC60222.2024.10575027
[34] Espinoza-Vega, A., and Roa, H.N., Boosting customer retention in pharmaceutical retail: a predictive approach based on machine learning models, in Science and Information Conference, Springer, 2024, pp. 97–117. DOI: https://doi.org/10.1007/978-3-031-62277-9_7
[35] Phumchusri, N., and Phupaichitkun, N., Sales prediction hybrid models for retails using promotional pricing strategy as a key demand driver, Journal of Revenue and Pricing Management, 2024. DOI: https://doi.org/10.1057/s41272-024-00477-7.
[36] Javed, S., and Akhtar, R., Data driven approaches for demand forecasting in supply chain for business decisions, presented at the 2024 5th International Conference on Advancements in Computational Sciences, ICACS 2024, 2024. DOI: https://doi.org/10.1109/ICACS60934.2024.10473234.
[37] Tran, B.R., Sellin’ in the rain: weather, climate, and retail sales, Management Science, 69(12), pp. 7423–7447, 2023. DOI: https://doi.org/10.1287/mnsc.2023.4799.
[38] Ratre, S., and Jayaraj, J., Sales prediction using ARIMA, Facebook’s prophet and XGBoost model of machine learning, presented at the Lecture Notes in Electrical Engineering, 2023, pp. 101–111. DOI: https://doi.org/10.1007/978-981-19-5868-7_9.
[39] Upadhyay, H., Shekhar, S., Vidyarthi, A., Prakash, R., and Gowri, R., Sales prediction in the Retail industry using machine learning: a case study of BigMart, presented at the IEEE International Conference on Electrical, Electronics, Communication and Computers, ELEXCOM 2023, 2023. DOI: https://doi.org/10.1109/ELEXCOM58812.2023.10370313.
[40] Suimon, Y., Tanabe, H., and Izumi, K., Using weather-based machine learning approach to estimate retail sales and interpret weather factors, presented at the Proceedings - 2023 14th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2023, 2023, pp. 725–727. DOI: https://doi.org/10.1109/IIAI-AAI59060.2023.00151.
[41] Suresh, B.S., and Suresh, M., A Comprehensive analysis of retail sales forecasting using machine learning and deep learning methods, presented at the 2023 International Conference on Data Science and Network Security, ICDSNS 2023, 2023. DOI: https://doi.org/10.1109/ICDSNS58469.2023.10245887.
[42] Kheawpeam, N., and Sinthupinyo, S., Demand forecasting using machine learning to manage product inventory for multi-channel retailing store, presented at the 2023 IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2023, 2023. DOI: https://doi.org/10.1109/COINS57856.2023.10189241.
[43] Shi, R., and Zhang, C., A study of sales forecasting in multinational retail companies: a feature extraction-machine learning-classification based forecasting framework, presented at the 2023 IEEE International Conference on Sensors, Electronics and Computer Engineering, ICSECE 2023, 2023, pp. 401–405. DOI: https://doi.org/10.1109/ICSECE58870.2023.10263406.
[44] Ocaña, L.L., Ruiz, D.P., and Fiallos, B.V., Optimizing retail business strategies with advanced analytics and improved business intelligence techniques, Journal of Intelligent Systems and Internet of Things, 11(1), pp. 75–83, 2024. DOI: https://doi.org/10.54216/JISIoT.110108.
[45] Feldman, J., Zhang, D.J., Liu, X., and Zhang, N., Customer Choice Models vs. Machine Learning: finding optimal product displays on Alibaba, Operations Research, 70(1), pp. 309–328, 2022. DOI: https://doi.org/10.1287/opre.2021.2158.
[46] Punia, S., and Shankar, S., Predictive analytics for demand forecasting: a deep learning-based decision support system, Knowledge-Based Systems, 258, 2022. DOI: https://doi.org/10.1016/j.knosys.2022.109956.
[47] ElSayad, G., and Mamdouh, H., Are young adult consumers ready to be intelligent shoppers? The importance of perceived trust and the usefulness of AI-powered retail platforms in shaping purchase intention, Young Consumers, 2024. DOI: https://doi.org/10.1108/YC-02-2024-1991
[48] Duwadi, S., and Cautinho, C., ChatGPT based recommendation system for retail shops, presented at the Procedia Computer Science, 2024, pp. 253–260. DOI: https://doi.org/10.1016/j.procs.2024.05.103.
[49] Yang, Y., and Lan, T., Boosting sports card sales: leveraging visual display and machine learning in online Retail, Journal of Retailing and Consumer Services, 81, art. 103991, 2024. DOI: https://doi.org/10.1016/j.jretconser.2024.103991
[50] Ho, S.P.S., and Chow, M.Y.C., The role of artificial intelligence in consumers’ brand preference for retail banks in Hong Kong, Journal of Financial Services Marketing, 2023. DOI: https://doi.org/10.1057/s41264-022-00207-3.
[51] Reddy, N.S., and Khanna, P., The role of artificial intelligence in reimaging the customer experience in Retail Sector – NVIVO analysis for customer journey mapping, International Journal of Intelligent Systems and Applications in Engineering, 12(4s), pp. 566–585, 2024.
[52] Aljaž, T., Enhancing retail operations: integrating artificial intelligence into the theory of constraints thinking process to solve shelf issue, Elektrotehniski Vestnik/Electrotechnical Review, 91(1–2), pp. 53–58, 2024.
[53] Scarpi, D., and Pantano, E., ‘With great power comes great responsibility’: exploring the role of Corporate Digital Responsibility (CDR) for Artificial Intelligence Responsibility in Retail Service Automation (AIRRSA), Organizational Dynamics, 53(2), 2024. DOI: https://doi.org/10.1016/j.orgdyn.2024.101030.
[54] Blut, M., Wünderlich, N.V., and Brock, C., Facilitating retail customers’ use of AI-based virtual assistants: a meta-analysis, Journal of Retailing, 100(2), pp. 293–315, 2024. DOI: https://doi.org/10.1016/j.jretai.2024.04.001.
[55] Bai, B., and Wu, G., The role of big data in the formation of supply chain platform for new forms of online retail, Chinese Management Studies, 18(4), pp. 1047–1064, 2024. DOI: https://doi.org/10.1108/CMS-09-2022-0336.
[56] Sharma, S., Islam, N., Singh, G., and Dhir, A., Why do retail customers adopt Artificial Intelligence (AI) based autonomous decision-making systems? IEEE Transactions on Engineering Management, 71, pp. 1846–1861, 2024. DOI: https://doi.org/10.1109/TEM.2022.3157976.
[57] Yamuna, G., Dhinakaran, D.P., Vijai, C., Kingsly, P.J., Devi, S.R., and others, Machine learning-based price optimization for dynamic pricing on online retail, in 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), IEEE, 2024, pp. 1–5. DOI: https://doi.org/10.1109/ICONSTEM60960.2024.10568763
[58] Karpushkin, G., Predicting consumer behavior based on big data of user-generated online content in retail marketing, Global Journal of Flexible Systems Management, 25(1), pp. 163–178, 2024. DOI: https://doi.org/10.1007/s40171-024-00372-5.
[59] Klepo, M. and Novoselnik, B., Product demand forecasting for shelf space allocation in retail via machine learning, in 2024 47th MIPRO ICT and Electronics Convention (MIPRO), IEEE, 2024, pp. 146–151. DOI: https://doi.org/10.1109/MIPRO60963.2024.10569517
[60] Alawadh, M., and Barnawi, A., A consumer behavior analysis framework toward improving market performance indicators: Saudi’s retail sector as a case study, Journal of Theoretical and Applied Electronic Commerce Research, 19(1), pp. 152–171, 2024. DOI: https://doi.org/10.3390/jtaer19010009.
[61] Muñoz-Villamizar, A., Piatti, M., Mejía-Argueta, C., Pirabe, L.F., Namdar, J., and Gomez, J.F., Navigating retail inflation in Brazil: a machine learning and web scraping approach to the basic food basket, Journal of Retailing and Consumer Services, 79, 2024. DOI: https://doi.org/10.1016/j.jretconser.2024.103875.
[62] Chen H., and Lim, A., Were consumers less price sensitive to life necessities during the COVID-19 Pandemic? an empirical study on dutch consumers, presented at the Lecture Notes in Networks and Systems, 2023, pp. 79–100. DOI: https://doi.org/10.1007/978-3-031-16075-2_6.
[63] Raman, R., and Mookherjee, U.K., Revolutionizing retail: empowering personalized shopping with advanced algorithms, presented at the Proceedings of 2023 IEEE Technology and Engineering Management Conference - Asia Pacific, TEMSCON-ASPAC 2023, 2023. DOI: https://doi.org/10.1109/TEMSCON-ASPAC59527.2023.10531538.
[64] Srivastava, S., Tripathi, K.M., Sharma, K., Agarwal, R., Wable, U., and Gaikwad, P., Retail transformation through Big Data in inventory control and consumer analytics, presented at the 3rd IEEE International Conference on ICT in Business Industry and Government, ICTBIG 2023, 2023. DOI: https://doi.org/10.1109/ICTBIG59752.2023.10456076.
[65] Mehla, A., and Raman, R., The rise of smart retail: enhancing operations with cutting-edge algorithms, presented at the 2023 Global Conference on Information Technologies and Communications, GCITC 2023, 2023. DOI: https://doi.org/10.1109/GCITC60406.2023.10426006.
[66] Lu, J., Zheng, X., Nervino, E., Li, Y., Xu, Z., and Xu, Y., Retail store location screening: a machine learning-based approach, Journal of Retailing and Consumer Services, 77, 2024. DOI: https://doi.org/10.1016/j.jretconser.2023.103620.
[67] Harish, A.S., and Malathy, C., Evaluative study of cluster based customer churn prediction against conventional RFM based churn model, presented at the 2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2023, 2023. DOI: https://doi.org/10.1109/ICEEICT56924.2023.10156962.
[68] Knuth, T., and Ahrholdt, D.C., Consumer fraud in online shopping: detecting risk indicators through data mining, International Journal of Electronic Commerce, 26(3), pp. 388–411, 2022. DOI: https://doi.org/10.1080/10864415.2022.2076199.
[69] You, Y., and Zhang, J., Analysis of new retail location based on GIS spatial analysis—Take Starbucks and Luckin Coffee for example, presented at the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2022, pp. 79–84. DOI: https://doi.org/10.5194/isprs-archives-XLVIII-3-W2-2022-79-2022.
[70] Gattermann-Itschert, T., and Thonemann, U.W., Proactive customer retention management in a non-contractual B2B setting based on churn prediction with random forests, Industrial Marketing Management, 107, pp. 134–147, 2022. DOI: https://doi.org/10.1016/j.indmarman.2022.09.023.
[71] De Almeida, F.M., Martins, A.M., Nunes, M.A., and Bezerra, L.C.T., Retail sales forecasting for a Brazilian supermarket chain: An empirical assessment, presented at the Proceedings - 2022 IEEE 24th Conference on Business Informatics, CBI 2022, 2022, pp. 60–69. DOI: https://doi.org/10.1109/CBI54897.2022.00014.
[72] Dahake, P.S., Bagaregari, P., and Dahake, N.S., Shaping the future of retail: a comprehensive review of predictive analytics models for consumer behavior, in Entrepreneurship and Creativity in the Metaverse, 2024, pp. 143–160. DOI: https://doi.org/10.4018/979-8-3693-1734-1.ch011.
[73] Neroni, M., Rizzi, A., Romagnoli, G., and Rosa, M., RFID software-based shielding: Implementation of further approaches under varying surrounding conditions, International Journal of RF Technologies: Research and Applications, 12(2), pp. 127–143, 2022. DOI: https://doi.org/10.3233/RFT-220320.
[74] Girimurugan, B., Gokul, K., Sasank, M.S.S., Pokuri, V, Kurra, N.K., and Reddy, V.D., Leveraging artificial intelligence and machine learning for advanced customer relationship management in the retail industry, presented at the 2024 2nd International Conference on Disruptive Technologies, ICDT 2024, 2024, pp. 51–55. DOI: https://doi.org/10.1109/ICDT61202.2024.10488981.
[75] Joby, G., Cordeiro, H., Anantpurkar, M., and Tripathy, A.K., CCRNET Customer Conversion Rate Network, presented at the 2022 IEEE 3rd Global Conference for Advancement in Technology, GCAT 2022, 2022. DOI: https://doi.org/10.1109/GCAT55367.2022.9972152.
[76] Caliskan, A., Ozdemir, V., Bayturk, E., Oztork, O.M., Kefeli, O.D., and Uzengi, A., Real time retail analytics with computer vision, presented at the Proceedings - 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022, 2022. DOI: https://doi.org/10.1109/ASYU56188.2022.9925538.
[77] Murindanyi, S., Wycliff-Mugalu, B., Nakatumba-Nabende, J., and Marvin, G., Interpretable machine learning for predicting customer churn in retail banking, presented at the 7th International Conference on Trends in Electronics and Informatics, ICOEI 2023 - Proceedings, 2023, pp. 967–974. DOI: https://doi.org/10.1109/ICOEI56765.2023.10125859.
[78] Yakymchuk, B., and Liashenko, O., Forecasting of new grocery store opening success using machine learning algorithms, presented at the Proceedings - International Conference on Advanced Computer Information Technologies, ACIT, 2022, pp. 203–206. DOI: https://doi.org/10.1109/ACIT54803.2022.9913157.
[79] Dias, J., Godinho, P., and Torres, P., Machine learning for customer churn prediction in retail banking, presented at the Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, pp. 576–589. DOI: https://doi.org/10.1007/978-3-030-58808-3_42.
[80] 2nd International Workshop on Recent Advances in Digital Security: Biometrics and Forensics, BioFor 2019, 1st International Workshop on Pattern Recognition for Cultural Heritage, PatReCH 2019, 1st International Workshop eHealth in the Big Data and Deep Learning Era, e-BADLE 2019, International Workshop on Deep Understanding Shopper Behaviors and Interactions in Intelligent Retail Environments, DEEPRETAIL 2019 and Industrial session held at the 20th International Conference on Image Analysis and Processing, ICIAP 2019, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11808 LNCS, 2019, [Online]. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072870782&partnerID=40&md5=a3845613a40ad49106629d08bb76087c
[81] Ibrahim, N.F., and Wang, X., Mining social network content of online retail brands: a machine learning approach, presented at the Proceedings of the 11th European Conference on Information Systems Management, ECISM 2017, 2017, pp. 129–138. [Online]. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039840879&partnerID=40&md5=6e536bca97462b904c98f5be59b832b1
[82] Cheema, A.S., Harnessing supremacy of big data in retail sector via hadoop, presented at the Communications in Computer and Information Science, 2018, pp. 111–123. DOI: https://doi.org/10.1007/978-981-13-0755-3_9.
[83] Griva, A., ‘I can get no e-satisfaction’. What analytics say? Evidence using satisfaction data from e-commerce, Journal of Retailing and Consumer Services, 66, 2022. DOI: https://doi.org/10.1016/j.jretconser.2022.102954.
[84] Wu, E., and Maslov, D., Raspberry Pi retail applications: transform your business with a low-cost single-board computer. in Raspberry Pi Retail Applications: Transform Your Business with a Low-Cost Single-Board Computer. 2022, 246 P. DOI: https://doi.org/10.1007/978-1-4842-7951-9.
[85] Santos, V., and Bacalhau, L.M., Digital transformation of the retail point of sale in the artificial intelligence era, in Management and Marketing for Improved Retail Competitiveness and Performance, 2023, pp. 200–216. DOI: https://doi.org/10.4018/978-1-6684-8574-3.ch010.
[86] Paranavithana, I.R., Rupasinghe, T.D., and Prior, D.D., A machine-learnt approach to market segmentation and purchase prediction Using Point-Of-Sale (POS) Data, presented at the Lecture Notes in Electrical Engineering, 2023, pp. 49–61. DOI: https://doi.org/10.1007/978-981-19-3579-4_4.
[87] Mittal, A., Chaturvedi, D.D., Chaturvedi, S., and Singh, P.K., Impact of negative aspects of artificial intelligence on customer purchase intention: an empirical study of online retail customers towards AIEnabled E-Retail Platforms, in Demystifying the Dark Side of AI in Business, 2024, pp. 159–173. DOI: https://doi.org/10.4018/979-8-3693-0724-3.ch010.
[88] Kumar, M.R., Venkatesh, J., and Rahman A.M.J.M.Z., Data mining and machine learning in retail business: developing efficiencies for better customer retention, Journal of Ambient Intelligence and Humanized Computing, 2021. DOI: https://doi.org/10.1007/s12652-020-02711-7.
[89] Chen, Y., Using machine learning to compare the information needs and interactions of Facebook: taking six retail brands as an example, Information (Switzerland), 12(12), art. 120526, 2021. DOI: https://doi.org/10.3390/info12120526.
[90] Pulari, S.R., Murugesh, T.S., Vasudevan, S.K., and Ramakrishnan, A.B., Reinforcement learning for demand forecasting and customized services, in cognitive analytics and reinforcement learning: theories, Techniques and Applications, 2024, pp. 123–134. DOI: https://doi.org/10.1002/9781394214068.ch6.
[91] Behera, R.K., Bala, P.K., Rana, N.P., Algharabat, R.S., and Kumar, K., Transforming customer engagement with artificial intelligence E-marketing: an E-retailer perspective in the era of retail 4.0, Marketing Intelligence and Planning, 2024. DOI: https://doi.org/10.1108/MIP-04-2023-0145.
[92] Zimmermann, R. et al., Enhancing brick-and-mortar store shopping experience with an augmented reality shopping assistant application using personalized recommendations and explainable artificial intelligence, Journal of Research in Interactive Marketing, 17(2), pp. 273–298, 2023. DOI: https://doi.org/10.1108/JRIM-09-2021-0237.
[93] Loukili, M., Messaoudi, F., and Ghazi, M.E., Personalizing product recommendations using collaborative filtering in online retail: a machine learning approach, presented at the 2023 International Conference on Information Technology: Cybersecurity Challenges for Sustainable Cities, ICIT 2023 - Proceeding, 2023, pp. 19–24. DOI: https://doi.org/10.1109/ICIT58056.2023.10226042.
[94] Atunwa, M., Ush, S.Z., Shatha, G.R., and Jamila, M., Utilizing ensemble approach for predictive customer clustering analysis with unsupervised cluster labeling, presented at the Proceedings - International Conference on Developments in eSystems Engineering, DeSE, 2023, pp. 258–263. DOI: https://doi.org/10.1109/DeSE60595.2023.10469368.
[95] Agbemadon, K.B., Couturier, R., and Laiymani, D., Churn detection using machine learning in the retail industry, presented at the 2022 2nd International Conference on Computer, Control and Robotics, ICCCR 2022, 2022, pp. 172–178. DOI: https://doi.org/10.1109/ICCCR54399.2022.9790213.
[96] Rodríguez-Pardo, C., Patricio, M.A., Berlanga, A., and Molina, J.M., Machine learning for smart tourism and retail, in Handbook of Research on Big Data Clustering and Machine Learning, 2019, pp. 311–333. DOI: https://doi.org/10.4018/978-1-7998-0106-1.ch014.
[97] Adke, V., Bakhshi, P., and Askari, M., Impact of disruptive technologies on customer experience management in ASEAN: a review, presented at the 2022 IEEE International Conference on Computing, ICOCO 2022, 2022, pp. 364–368. DOI: https://doi.org/10.1109/ICOCO56118.2022.10031882.
[98] Pondel, M., and Pondel, J., Machine learning solutions in retail eCommerce to increase marketing efficiency, presented at the IFIP Advances in Information and Communication Technology, 2021, pp. 91–105. DOI: https://doi.org/10.1007/978-3-030-85001-2_8.
[99] Mora, D. et al., Who wants to use an augmented reality shopping assistant application? presented at the CHIRA 2020 - Proceedings of the 4th International Conference on Computer-Human Interaction Research and Applications, 2020, pp. 309–318. [Online]. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108113079&partnerID=40&md5=ea001aed1627c64c9e3b52cb71f9ad6b
[100] Zeba, F., and Shaheen, M., Consumer insights through retail analytics, in Artificial Intelligence and Machine Learning in Business Management: Concepts, Challenges, and Case Studies, 2021, pp. 15–28. DOI: https://doi.org/10.1201/9781003125129-2.
[101] Topçu, B., Göksu, D., Aşkın, N., Yıldırım, M.C., Aktaş, T., and U. Menteş, B., Improving replenishment for retail: utilizing planogram information, in Intelligent Systems Conference, Springer, 2024, pp. 132–152. DOI: https://doi.org/10.1007/978-3-031-66329-1_11
[102] Nasseri, M., Falatouri, T., Brandtner, P., and Darbanian, F., Applying machine learning in retail demand prediction—A comparison of tree-based ensembles and long short-term memory-based deep learning, Applied Sciences (Switzerland), 13(19), 2023. DOI: https://doi.org/10.3390/app131911112.
[103] Kulkarni, P.M., Gokhale, P., and Dandannavar, P.S., Big Data challenges in retail sector: perspective from data envelopment analysis, presented at the EAI/Springer Innovations in Communication and Computing, 2023, pp. 89–97. DOI: https://doi.org/10.1007/978-3-031-28324-6_8.
[104] Yakymchuk, B., and Liashenko, O., Modeling the resource planning system for grocery retail using machine learning, presented at the Communications in Computer and Information Science, 2023, pp. 288–299. DOI: https://doi.org/10.1007/978-3-031-48325-7_22.
[105] Pereira, A.M. et al., Customer models for artificial intelligence-based decision support in fashion online retail supply chains, Decision Support Systems, 158, 2022. DOI: https://doi.org/10.1016/j.dss.2022.113795.
[106] Sruthi, K., and Prabhu, S., Influence of consumer decisions by recommendar system in fashion e-commerce website, presented at the 2022 International Conference on Decision Aid Sciences and Applications, DASA 2022, 2022, pp. 421–424. DOI: https://doi.org/10.1109/DASA54658.2022.9765312.
[107] Shaukat, K., Luo, S., Abbas, N., Mahboob Alam, T., Ehtesham Tahir, M., and Hameed, I.A., An analysis of blessed friday sale at a retail store using classification models, presented at the ACM International Conference Proceeding Series, 2021, pp. 193–198. DOI: https://doi.org/10.1145/3451471.3451502.
[108] Narayana, C.V., Likhitha, C.L., Bademiya, S., and Kusumanjali, K., Machine Learning techniques to predict the price of used cars: predictive analytics in retail business, presented at the Proceedings of the 2nd International Conference on Electronics and Sustainable Communication Systems, ICESC 2021, 2021, pp. 1680–1687. DOI: https://doi.org/10.1109/ICESC51422.2021.9532845.
[109] Al-Omoush, R., Fraihat, S., Al-Naymat, G., and Awad, M., Design and implementation of business intelligence framework for a global online retail business, presented at the 2022 International Conference on Emerging Trends in Computing and Engineering Applications, ETCEA 2022 - Proceedings, 2022. DOI: https://doi.org/10.1109/ETCEA57049.2022.10009688.
[110] Javaid, K. et al., Explainable artificial intelligence solution for online retail, Computers, Materials and Continua, 71(2), pp. 4425–4442, 2022. DOI: https://doi.org/10.32604/cmc.2022.022984.
[111] Khatri, B., and Rungi, M., Regression-based business decision support: application in online retail, presented at the IEEE International Conference on Industrial Engineering and Engineering Management, 2022, pp. 1505–1509. DOI: https://doi.org/10.1109/IEEM55944.2022.9989568.
[112] Chaudhary, M., Gaur, L., and Chakrabarti, A., Detecting the employee satisfaction in retail: a latent dirichlet allocation and machine learning approach, presented at the Proceedings - 2022 3rd International Conference on Computation, Automation and Knowledge Management, ICCAKM 2022, 2022. DOI: https://doi.org/10.1109/ICCAKM54721.2022.9990186.
[113] Thyagharajan, K.K., Lalitha, S.D., Madhavi, N.B., Seal, S., Nithya Jenev, J., and Senthilnathan, B., Random forest-based retail management to improve the recognition rates of employees, presented at the 2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023, 2023. DOI: https://doi.org/10.1109/RMKMATE59243.2023.10369487.
[114] Sousa, C., Manuela Gonçalves, A., and da Costa Freitas, A., Categories’s Churn: a machine learning approach in retail, in International Conference on Computational Science and Its Applications, Springer, 2024, pp. 319–336. DOI: https://doi.org/10.1007/978-3-031-65154-0_20
[115] Gopal, P.R.C., Rana, N.P., Krishna, T.V., and Ramkumar, M., Impact of big data analytics on supply chain performance: an analysis of influencing factors, Annals of Operations Research, 333(2–3), pp. 769–797, 2024. DOI: https://doi.org/10.1007/s10479-022-04749-6.
[116] Silva, E.S., Hassani, H., and Madsen, D.Ø., Big Data in fashion: transforming the retail sector, Journal of Business Strategy, 41(4), pp. 21–27, 2020. DOI: https://doi.org/10.1108/JBS-04-2019-0062.
[117] Goti, A., Querejeta-Lomas, L., Almeida, A., de la Puerta, J.G., and López-de-Ipiña, D., Artificial intelligence in business-to-customer fashion retail: a literature review, Mathematics, 11(13), 2023. DOI: https://doi.org/10.3390/math11132943.
[118] Fares, N., Lebbar, M., and Sbihi, N., A customer profiling’ machine learning approach, for in-store sales in fast fashion, presented at the Advances in Intelligent Systems and Computing, 2019, pp. 586–591. DOI: https://doi.org/10.1007/978-3-030-11928-7_53.
[119] Fares, N., Lebbar, M., Sbihi, N., and El Boukhari El Mamoun, A., Data mining dynamic hybrid model for logistic supplying chain: Assortment setting in fast fashion retail, presented at the Advances in Intelligent Systems and Computing, 2019, pp. 578–585. DOI: https://doi.org/10.1007/978-3-030-11928-7_52.
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




