Micrographs displaying the fracture cross-section of three types of infill at an infill density of 100%

Publicado

2025-05-15

Exploring infill pattern and density effects on the tensile properties of 3D printed ABS

Exploración del efecto del patrón y la densidad de relleno en las propiedades a tracción del ABS impreso en 3D

DOI:

https://doi.org/10.15446/dyna.v92n237.117491

Palabras clave:

3D printing, ABS, infill pattern, tensile strength (en)
impresión 3D, ABS, patrón de relleno, resistencia a la tracción (es)

Descargas

Autores/as

Fused Deposition Modeling (FDM) is recognized as an efficient method for creating durable, complex parts quickly and affordably. This study examines how different infill patterns and densities affect the mechanical properties of ABS, with specimens produced via FDM for tensile testing. Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) identified the functional groups in ABS, while microscopic analysis assessed layer bonding. Results showed that tensile strength increased with higher infill densities and revealed that bonding characteristics of various infill patterns significantly impacted mechanical performance at densities from 25% to 100%. Interestingly, the same infill pattern displayed varied mechanical and bonding properties depending on density, highlighting the importance of selecting optimal infill configurations for specific applications.

El modelado por deposición fundida (FDM, por sus siglas en inglés) es reconocido como un método eficiente para fabricar piezas duraderas y complejas de forma rápida y económica. Este estudio analiza cómo los diferentes patrones y densidades de relleno afectan las propiedades mecánicas del ABS, con especímenes fabricados mediante FDM para ensayos de tracción. Se utilizó espectroscopia infrarroja por transformada de Fourier con reflexión total atenuada (FTIR-ATR) para identificar los grupos funcionales presentes en el ABS, mientras que el análisis microscópico permitió evaluar la adhesión entre capas. Los resultados mostraron que la resistencia a la tracción aumenta con mayores densidades de relleno, y evidenciaron que las características de unión de los distintos patrones de relleno influyen significativamente en el comportamiento mecánico, en un rango de densidad entre el 25% y el 100%. Curiosamente, un mismo patrón de relleno presentó propiedades mecánicas y de adhesión variables según la densidad, lo que resalta la importancia de seleccionar configuraciones de relleno óptimas para cada aplicación específica.

Referencias

[1] Ebel, B., Sinnermann, T., Fabrication of FDM 3D objects with ABS and PLA and determination of their mechanical properties, [Online]. RTejournal, (1), pp. 1–9, 2014. Available at: https://rtejournal.de/rte/article/view/2014_3

[2] Alagheband, M., Zhang, Q., Jung, S., Investigating the influence of infill patterns and mesh modifiers on fatigue properties of 3D printed polymers. International Journal of Fatigue, 187, art. 108463, 2024. DOI: https://doi.org/10.1016/j.ijfatigue.2024.108463.

[3] Dizon, J.R.C., Espera, A.H., Chen, Q., Advincula, R.C., Mechanical characterization of 3D-printed polymers, Additive Manufacturing, (20), pp. 44–67, 2018. DOI: https://doi.org/10.1016/j.addma.2017.12.002.

[4] Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polymer Testing, (69), pp. 157–66, 2018. DOI: https://doi.org/10.1016/j.polymertesting.2018.05.020.

[5] Dudescu, M.C., Racz, L., Popa, F., Effect of infill pattern on fatigue characteristics of 3D printed polymers, Materials Today: Proceeding, 78(2), 2023, pp. 263–9. DOI: https://doi.org/10.1016/j.matpr.2022.11.283.

[6] Sriya-Ambati, S., Ambatipudi, R., Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts, Materials Today: Proceeding, 64(1), 2022, pp. 804–7. DOI: https://doi.org/10.1016/j.matpr.2022.05.312.

[7] Din, S., Xu, W., Cheng, L.K., Dirven, S., A Stretchable Multimodal Sensor for Soft Robotic Applications, IEEE Sensors Journal, 17(17), pp. 5678–5686, 2017. DOI: https://doi.org/10.1109/JSEN.2017.2726099.

[8] Fiorio, R., Díez, S.V., Sánchez, A., D’hooge, D.R., Cardon, L., Influence of different stabilization systems and multiple ultraviolet a (UVA) aging/recycling steps on physicochemical, mechanical, colorimetric, and thermal-oxidative properties of ABS, Materials, 13(1), pp.1–14, 2020. DOI: https://doi.org/10.3390/ma13010212.

[9] Appalsamy, T., Hamilton, S.L., Kgaphola, M.J., Tensile Test Analysis of 3D Printed Specimens with Varying Print Orientation and Infill Density, Journal of Composites Science, 8(4), pp. 1–15, 2024. DOI: https://doi.org/10.3390/jcs8040121

[10] Hozdić, E., Characterization and Comparative Analysis of Mechanical Parameters of FDM- and SLA-Printed ABS Materials, Applied Sciences (Switzerland), 14(2), pp. 1–22, 2024. DOI: https://doi.org/10.3390/app14020649

[11] Qamar-Tanveer, M., Mishra, G., Mishra, S., Sharma, R., Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review, Materials Today: proceedings, 62(1), pp. 100–8, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.02.310.

[12] Tzotzis, A., Manavis, A., Efkolidis, N., García-Hernández, C., Kyratsis, P., Analysis of the Influence of Structural Characteristics on the Tensile Properties of Fused Filament Fabricated ABS Polymer Using Central Composite Design, Applied Mechanics, 5(1), pp. 20–35, 2024. DOI: https://doi.org/10.3390/applmech5010002.

[13] Daly, M., Tarfaoui, M., Bouali, M., Bendarma, A., Effects of Infill Density and Pattern on the Tensile Mechanical Behavior of 3D-Printed Glycolyzed Polyethylene Terephthalate Reinforced with Carbon-Fiber Composites by the FDM Process, Journal of Composites Science, 8(4), pp. 1–15, 2024. DOI: https://doi.org/10.3390/jcs8040115.

[14] Sharma, S., Gupta, V., Mudgal, D., Effect of infill pattern on the mechanical properties of polydopamine-coated polylactic acid orthopedic bone plates developed by fused filament fabrication, Polymer Engineering and Science, 63(2), pp. 353–65, 2023. DOI: https://doi.org/10.1002/pen.26210.

[15] Agrawal, A.P., Kumar, V., Kumar, J., Paramasivam, P., Dhanasekaran, S., Prasad, L. An investigation of combined effect of infill pattern, density, and layer thickness on mechanical properties of 3D printed ABS by fused filament fabrication. Heliyon, 9(6), art. 16531, 2023. DOI: https://doi.org/10.1016/j.heliyon.2023.e16531.

[16] Calleja‐ochoa, A., Gonzalez‐barrio, H., de Lacalle, N.L., Martínez, S., Albizuri, J., Lamikiz, A., A new approach in the design of microstructured ultralight components to achieve maximum functional performance, Materials, 14(7), pp. 1–12, 2021. DOI: https://doi.org/10.3390/ma14071588.

Cómo citar

IEEE

[1]
B. Leonardelli, C. Pandolfi, G. A. Ludwig, y C. P. Fontoura, «Exploring infill pattern and density effects on the tensile properties of 3D printed ABS», DYNA, vol. 92, n.º 237, pp. 46–50, may 2025.

ACM

[1]
Leonardelli, B., Pandolfi, C., Ludwig, G.A. y Fontoura, C.P. 2025. Exploring infill pattern and density effects on the tensile properties of 3D printed ABS. DYNA. 92, 237 (may 2025), 46–50. DOI:https://doi.org/10.15446/dyna.v92n237.117491.

ACS

(1)
Leonardelli, B.; Pandolfi, C.; Ludwig, G. A.; Fontoura, C. P. Exploring infill pattern and density effects on the tensile properties of 3D printed ABS. DYNA 2025, 92, 46-50.

APA

Leonardelli, B., Pandolfi, C., Ludwig, G. A. & Fontoura, C. P. (2025). Exploring infill pattern and density effects on the tensile properties of 3D printed ABS. DYNA, 92(237), 46–50. https://doi.org/10.15446/dyna.v92n237.117491

ABNT

LEONARDELLI, B.; PANDOLFI, C.; LUDWIG, G. A.; FONTOURA, C. P. Exploring infill pattern and density effects on the tensile properties of 3D printed ABS. DYNA, [S. l.], v. 92, n. 237, p. 46–50, 2025. DOI: 10.15446/dyna.v92n237.117491. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/117491. Acesso em: 24 dic. 2025.

Chicago

Leonardelli, Bruno, Cesar Pandolfi, Gustavo Alberto Ludwig, y Cristian Padilha Fontoura. 2025. «Exploring infill pattern and density effects on the tensile properties of 3D printed ABS». DYNA 92 (237):46-50. https://doi.org/10.15446/dyna.v92n237.117491.

Harvard

Leonardelli, B., Pandolfi, C., Ludwig, G. A. y Fontoura, C. P. (2025) «Exploring infill pattern and density effects on the tensile properties of 3D printed ABS», DYNA, 92(237), pp. 46–50. doi: 10.15446/dyna.v92n237.117491.

MLA

Leonardelli, B., C. Pandolfi, G. A. Ludwig, y C. P. Fontoura. «Exploring infill pattern and density effects on the tensile properties of 3D printed ABS». DYNA, vol. 92, n.º 237, mayo de 2025, pp. 46-50, doi:10.15446/dyna.v92n237.117491.

Turabian

Leonardelli, Bruno, Cesar Pandolfi, Gustavo Alberto Ludwig, y Cristian Padilha Fontoura. «Exploring infill pattern and density effects on the tensile properties of 3D printed ABS». DYNA 92, no. 237 (mayo 9, 2025): 46–50. Accedido diciembre 24, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/117491.

Vancouver

1.
Leonardelli B, Pandolfi C, Ludwig GA, Fontoura CP. Exploring infill pattern and density effects on the tensile properties of 3D printed ABS. DYNA [Internet]. 9 de mayo de 2025 [citado 24 de diciembre de 2025];92(237):46-50. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/117491

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Vijayvignesh Namasivayam Sukumaar, Sanjay Mavinkere Rangappa, Yucheng Liu, Suchart Siengchin. (2025). A comprehensive review on the influence of fused deposition modelling process parameters upon thermoplastic composite materials. Advanced Industrial and Engineering Polymer Research, https://doi.org/10.1016/j.aiepr.2025.11.006.

Dimensions

PlumX

Visitas a la página del resumen del artículo

266

Descargas

Los datos de descargas todavía no están disponibles.