Details of the specimens: (b) Specimen geometry.

Publicado

2025-08-19

Microstructure influence on crack propagation behavior of nodular cast iron

Influencia de la microestructura en el comportamiento de propagación de grietas en fundición nodular

DOI:

https://doi.org/10.15446/dyna.v92n238.117610

Palabras clave:

nodular cast iron, fracture mechanics, scanning electron microscopy, micrographic analysis (en)
fundición nodular, mecanismos de fractura, microscopia electrónica de barrido, análisis micrográfico (es)

Descargas

Autores/as

This paper offers a comprehensive analysis of the crack propagation behavior of a specific type of Nodular Cast Iron (NCI) and its correlation with microstructural morphology. To estimate da/dN vs K curves, crack propagation tests were conducted utilizing Compact Test Specimens (CTS). Additionally, Scanning Electron Microscopy Analysis was employed to characterize the microstructure morphology on the surfaces of the fractured specimens, with specific attention to the size and distribution of graphite nodules within the ferritic matrix. The findings of the study suggest that the position from which the CTS is extracted is contingent upon the graphite distribution, which could have a noteworthy impact on the crack propagation behavior of the investigated NCI alloy.

Este artículo ofrece un análisis exhaustivo del comportamiento de propagación de grietas de un tipo específico de fundición nodular (NCI) y su correlación con la morfología microestructural. Para estimar las curvas da/dN vs K, se realizaron pruebas de propagación de grietas utilizando muestras de prueba compactas (CTS). Además, se empleó análisis de microscopía electrónica de barrido para caracterizar la morfología de la microestructura en las superficies de las muestras fracturadas, con atención específica al tamaño y la distribución de los nódulos de grafito dentro de la matriz ferrítica. Los hallazgos del estudio sugieren que la posición desde la cual se extrae el CTS depende de la distribución del grafito, lo que podría tener un impacto notable en el comportamiento de propagación de grietas de la aleación NCI investigada.

Referencias

[1] Labrecque, C., and Gagné, M., Ductile Iron: fifty years of continuous development, Can. Metall. Q. 37(5), pp. 343–378, 1998. DOI: https://doi.10.1179/cmq.1998.37.5.343.

[2] Hervas, I., Ben-Bettaieb, M., Thuault, A., and Hug, E., Graphite nodule morphology as an indicator of the local complex strain state in ductile cast iron, Materials & Design, 52, pp. 524-532, 2013. DOI: https://doi.org/10.1016/j.matdes.2013.05.078

[3] Di-Cocco,V., Iacoviello, F., Rossi, A., and Ecarla, F., Mechanical properties gradient in graphite nodules:influence on ferritic DCI damaging micromechanisms, 2013, pp. 222–230.

[4] Iacoviello, F., Di-Bartolomeo O., Di-Cocco, V. and Piacente, V., Damaging micromechanisms in ferritic-pearlitic ductile cast irons, Mater. Sci. Eng. A, 478(1–2), pp. 181–186, 2008. DOI: https://doi.org/10.1016/j.msea.2007.05.110.

[5] Bonora N., and Ruggiero, A., Micromechanical modeling of ductile cast iron incorporating damage. part I: ferritic ductile cast iron, Int. J. Solids Struct., 42(5–6), pp. 1401–1424, 2005. DOI: https://doi.org/10.1016/j.ijsolstr.2004.07.025.

[6] Lacaze, J., Solidification of spheroidal graphite cast irons: III. Microsegregation related effects, Acta Mater., 47(14), pp. 3779–3792, 1999. DOI: https://doi.org/10.1016/S1359-6454(99)00233-5.

[7] Fernandino, D.O., and Boeri, R., Study of the fracture of ferritic ductile cast iron under different loading conditions, Fatigue Fract. Eng. Mater. Struct., 38(5), pp. 610–620, 2015. DOI: https://doi.org/10.1111/ffe.12266.

[8] Ceschini, L., Morri, A., and Morri, A., Effects of casting size on microstructure and mechanical properties of spheroidal and compacted graphite cast irons: experimental results and comparison with international standards, J. Mater. Eng. Perform., 26(6), pp. 2583–2592, 2017. DOI: https://doi.org/10.1007/s11665-017-2714-7.

[9] Queirós, R., Domeij, B., and Diószegi, A., Unraveling compacted and nodular cast iron porosity: case studies approach, Inter Metalcast., 18, pp. 1811–1830, 2024. DOI: https://doi.org/10.1007/s40962-023-01149-9

[10] Xu, M.S., and Shi, J.L., Fracture analysis of nodular cast iron crankshaft, Metalurgija, 59(4), pp. 517–520, 2020.

[11] Betancur, A., Anflor, C., Pereira, A., and Leiderman, R., Determination of the effective elastic modulus for nodular cast iron using the boundary element method, Metals (Basel), 8(8), art. 641, 2018. DOI: https://doi.org/10.3390/met8080641.

[12] Hütter, G., Zybell, L., and Kuna, M., Micromechanisms of fracture in nodular cast iron: From experimental findings towards modeling strategies. A review, Eng. Fract. Mech., 144(6), pp. 118–141, 2015. DOI: https://doi.org/10.1016/j.engfracmech.2015.06.042.

[13] Iacoviello, F., Di-Cocco, V., Rossi, A., and Cavallini, M., Ferritic-pearlitic ductile cast irons: Is ΔK a useful parameter? 13th Int. Conf. Fract. 2013, ICF 2013, 2, 2013, pp. 998–1006.

[14] Vaško, A., and Chalupová, M., The micro-mechanisms of failure of nodular cast iron, Prod. Eng. Arch., 5(4), pp. 31–35, 2014. DOI: https://doi.org/10.30657/pea.2014.05.08

[15] Hütter, G., Zybell, L., and Kuna, M., Micromechanisms of fracture in nodular cast iron: From experimental findings towards modeling strategies - A review, Eng. Fract. Mech., 144, pp. 118–141, 2015. DOI: https://doi.org/10.1016/j.engfracmech.2015.06.042.

[16] Gonzaga, R.A., Influence of ferrite and pearlite content on mechanical properties of ductile cast irons, Mater. Sci. Eng. A, 567, pp. 1–8, 2013. DOI: https://doi.org/10.1016/j.msea.2012.12.089.

[17] Costa, N., Machado, N., and Silva, F.S., A new method for prediction of nodular cast iron fatigue limit, Int. J. Fatigue, 32(7), pp. 988–995, 2010. DOI: https://doi.org/10.1016/j.ijfatigue.2009.11.005.

[18] Čanžar, P., Tonkovich, Z., and Kodvanj, J., Microstructure influence on fatigue behaviour of nodular cast iron, Mater. Sci. Eng. A, 556, pp. 88–99, 2012. DOI: https://doi.org/10.1016/j.msea.2012.06.062.

[19] Ferro, P., Lazzarin, P., and Berto, F., Fatigue properties of ductile cast iron containing chunky graphite, Mater. Sci. Eng. A., 554, pp. 122–128, 2012. DOI: https://doi.org/10.1016/j.msea.2012.06.024.

[20] Nan, L., Shu ming, X., and Pei-wei, B., Microstructure and mechanical properties of nodular cast iron produced by melted metal die forging process. J. Iron Steel Res. Int., 20(6), pp. 58–62, 2013. DOI: https://doi.org/10.1016/S1006-706X(13)60112-0

[21] Azeem, M.A., Bjerre, M.K.R., Atwood, C., Tiedje, N., and P.D. Lee, Synchrotron quantification of graphite nodule evolution during the solidification of cast iron, Acta Mater., 155, pp. 393–401, 2018. DOI: https://doi.org/10.1016/j.actamat.2018.06.007.

[22] Escobar, A., Celentano, D., Cruchaga, M., and Schulz, B., On the effect of pouring temperature on spheroidal graphite cast iron solidification, Metals (Basel)., 5(2), pp. 628–647, 2015. DOI: https://doi.org/10.3390/met5020628.

[23] Lucas, L., Boneti, T.M., Hupalo, S.F., Junior, V., and Rosário, A.M., Influence of casting heterogeneities on microstructure and mechanical properties of austempered ductile iron (ADI), No. Stage II, 2017. DOI: https://doi.org/10.1590/s1517-707620170003.0192

[24] Voigt R.C., and Loper, C.R., Austempered ductile iron - process control and quality assurance, J. Mater. Eng. Perform., 22(10), pp. 2776–2794, 2013. DOI: https://doi.org/10.1007/s11665-013-0712-y.

[25] Dong, M.J., Prioul, C., and Francois, D., Damage effect on the fracture toughness of nodular cast iron: Part I. Damage characterization and plastic flow stress modeling, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 28(11), pp. 2245–2254, 1997. DOI: https://doi.org/10.1007/s11661-997-0182-7

[26] Berdin, C., Dong, M.J., and Prioul, C., Local approach of damage and fracture toughness for nodular cast iron, Engineering Fracture Mechanics, 68(9), pp. 1107–1117, 2001. DOI: https://doi.org/10.1016/S0013-7944(01)00010-8

[27] Vaško, A., Hurtalová, L., Uhríčik, M., and Tillová, E., Fatigue of nodular cast iron at high frequency loading, Materwiss. Werksttech., 47(5–6), pp. 436–443, 2016. DOI: https://doi.org/10.1002/mawe.201600519

[28] Ulewicz R., and Tomski, P.S., The effect of high-frequencies loading on the fatigue cracking of nodular cast iron, 2019, pp. 5–7.

[29] Seleš, K., Tomić, Z., and Tonković, Z., Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation, Eng. Fract. Mech., 255, art. 107973, 2021. DOI: https://doi.org/10.1016/j.engfracmech.2021.107973.

[30] D’-Agostino, L., De-Santis, A., Di-Cocco, V., Iacoviello, D., and Iacoviello, F., Fatigue crack propagation in Ductile Cast Irons: an Artificial Neural Networks based model, Procedia Struct. Integr., 3, pp. 291–298, 2017. DOI: https://doi.org/10.1016/j.prostr.2017.04.048

[31] Di-Cocco, V., Iacoviello, F., and Cavallini, M., Damaging micromechanisms characterization of a ferritic ductile cast iron, Eng. Fract. Mech., 77(11), pp. 2016–2023, 2010. DOI: https://doi.org/10.1016/j.engfracmech.2010.03.037

[32] Iacoviello, F., and Di-Cocco, V., Ductile cast irons: microstructure influence on fatigue crack propagation resistance, Frat. Ed Integrità Strutt., 13(13), pp. 3–16, 2010. DOI: https://doi.org710.3221/IGF-ESIS.13.01

[33] Di-Cocco, V., Iacoviello, F., Rossi, A., Cavallini, M., and Natali, S., Graphite nodules and fatigue crack propagation micromechanisms in a ferritic ductile cast iron, Fatigue Fract. Eng. Mater. Struct., 36(9), pp. 893–902, 2013. DOI: https://doi.org/10.1111/ffe.12056

[34] Iacoviello F., and Di Cocco, V., Influence of the graphite elements morphology on the fatigue crack propagation mechanisms in a ferritic ductile cast iron, Eng. Fract. Mech, 167, pp. 248–258, 2016. DOI: https://doi.org/10.1016/j.engfracmech.2016.03.041

[35] Limodin N., et al., Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation, Acta Mater., 58(8), pp. 2957–2967, 2010. DOI: https://doi.org/10.1016/j.actamat.2010.01.024

[36] Betancur A., and Anflor, C.T.M., Multi-Scaling homogenization process for nodular cast iron using BEM, J. Multiscale Model., 08(03n04), art. 1740005, 2017. DOI: https://doi.org/10.1142/s1756973717400054

[37] Pereira, A., Costa, M., Anflor, C., Pardal, J., and Leiderman, R., Estimating the effective elastic parameters of nodular cast iron from micro-tomographic imaging and multiscale finite elements: comparison between numerical and experimental results, Metals, 8(9), art. 695, 2018. DOI: https://doi.org/10.3390/met8090695

[38] Fernandino, D.O., Cisilino, A.P., and Boeri, R.E., Determination of effective elastic properties of ferritic ductile cast iron by computational homogenization, micrographs and microindentation tests, Mech. Mater., 83, pp. 110–121, 2015. DOI: https://doi.org/10.1016/j.mechmat.2015.01.002

[39] Mottitschka, T., Pusch, G., Biermann, H., Zybell, L., and Kuna, M., Influence of overloads on the fatigue crack growth in nodular cast iron: Experiments and numerical simulation, Procedia Eng. 2(1), pp. 1557–1567, 2010. DOI: https://doi.org/10.1016/j.proeng.2010.03.168

[40] Dahlberg, M., Fatigue crack propagation in nodular graphite cast iron. International Journal of Cast Metals Research, 17(1), pp. 29–37, 2004. DOI: https://doi.org/10.1179/136404604225012398

[41] Wasén, J., and Heier, E., Fatigue crack growth thresholds - The influence of Young’s modulus and fracture surface roughness, Int. J. Fatigue, 20(10), pp. 737–742, 1998. DOI: https://doi.org/10.1016/S0142-1123(98)00034-6

[42] de Sousa, J.A.G., Sales, W.F., Guesser, W.L., and Machado, Á.R., Machinability of rectangular bars of nodular cast iron produced by continuous casting, Int. J. Adv. Manuf. Technol., 98(9–12), pp. 2505–2517, 2018. DOI: https://doi.org/10.1007/s00170-018-2387-x.

[43] Anderson, T.L., Fracture Mechanics: Fundamental and Applications. 2017. DOI: https://doi.org/10.1201/9781315370293

Cómo citar

IEEE

[1]
C. T. Mota Anflor, J. D. Hurtado-Agualimpia, A. A. Betancur-Arroyave, S. H. da S. Carneiro, y J. N. Vaz Goulart, «Microstructure influence on crack propagation behavior of nodular cast iron», DYNA, vol. 92, n.º 238, pp. 93–102, jul. 2025.

ACM

[1]
Mota Anflor, C.T., Hurtado-Agualimpia, J.D., Betancur-Arroyave, A.A., Carneiro , S.H. da S. y Vaz Goulart, J.N. 2025. Microstructure influence on crack propagation behavior of nodular cast iron. DYNA. 92, 238 (jul. 2025), 93–102. DOI:https://doi.org/10.15446/dyna.v92n238.117610.

ACS

(1)
Mota Anflor, C. T.; Hurtado-Agualimpia, J. D.; Betancur-Arroyave, A. A.; Carneiro , S. H. da S.; Vaz Goulart, J. N. Microstructure influence on crack propagation behavior of nodular cast iron. DYNA 2025, 92, 93-102.

APA

Mota Anflor, C. T., Hurtado-Agualimpia, J. D., Betancur-Arroyave, A. A., Carneiro , S. H. da S. & Vaz Goulart, J. N. (2025). Microstructure influence on crack propagation behavior of nodular cast iron. DYNA, 92(238), 93–102. https://doi.org/10.15446/dyna.v92n238.117610

ABNT

MOTA ANFLOR, C. T.; HURTADO-AGUALIMPIA, J. D.; BETANCUR-ARROYAVE, A. A.; CARNEIRO , S. H. da S.; VAZ GOULART, J. N. Microstructure influence on crack propagation behavior of nodular cast iron. DYNA, [S. l.], v. 92, n. 238, p. 93–102, 2025. DOI: 10.15446/dyna.v92n238.117610. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/117610. Acesso em: 25 dic. 2025.

Chicago

Mota Anflor, Carla Tatiana, José David Hurtado-Agualimpia, Adrián Alberto Betancur-Arroyave, Sergio Henrique da Silva Carneiro, y Jhon Nero Vaz Goulart. 2025. «Microstructure influence on crack propagation behavior of nodular cast iron». DYNA 92 (238):93-102. https://doi.org/10.15446/dyna.v92n238.117610.

Harvard

Mota Anflor, C. T., Hurtado-Agualimpia, J. D., Betancur-Arroyave, A. A., Carneiro , S. H. da S. y Vaz Goulart, J. N. (2025) «Microstructure influence on crack propagation behavior of nodular cast iron», DYNA, 92(238), pp. 93–102. doi: 10.15446/dyna.v92n238.117610.

MLA

Mota Anflor, C. T., J. D. Hurtado-Agualimpia, A. A. Betancur-Arroyave, S. H. da S. Carneiro, y J. N. Vaz Goulart. «Microstructure influence on crack propagation behavior of nodular cast iron». DYNA, vol. 92, n.º 238, julio de 2025, pp. 93-102, doi:10.15446/dyna.v92n238.117610.

Turabian

Mota Anflor, Carla Tatiana, José David Hurtado-Agualimpia, Adrián Alberto Betancur-Arroyave, Sergio Henrique da Silva Carneiro, y Jhon Nero Vaz Goulart. «Microstructure influence on crack propagation behavior of nodular cast iron». DYNA 92, no. 238 (julio 31, 2025): 93–102. Accedido diciembre 25, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/117610.

Vancouver

1.
Mota Anflor CT, Hurtado-Agualimpia JD, Betancur-Arroyave AA, Carneiro SH da S, Vaz Goulart JN. Microstructure influence on crack propagation behavior of nodular cast iron. DYNA [Internet]. 31 de julio de 2025 [citado 25 de diciembre de 2025];92(238):93-102. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/117610

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

245

Descargas

Los datos de descargas todavía no están disponibles.