Inyector ensamblado

Publicado

2025-06-12

Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP

Manufacture of open source bioprinter injector, remote controlled by APP

DOI:

https://doi.org/10.15446/dyna.v92n237.117851

Palabras clave:

inyector, código abierto, comunicación serial (es)
injector, open source, serial communication (en)

Descargas

Autores/as

  • Dina L. Sandoval-Buitrago Semillero de Investigación INMED, Facultad de Ingeniería, Universidad Militar Nueva Granada, Bogotá, Colombia https://orcid.org/0009-0003-6194-4371
  • Luis F. Lugo-Molina Semillero de Investigación INMED, Facultad de Ingeniería, Universidad Militar Nueva Granada, Bogotá, Colombia https://orcid.org/0009-0001-4049-3933
  • María J. Jiménez-Ortiz Semillero de Investigación INMED, Facultad de Ingeniería, Universidad Militar Nueva Granada, Bogotá, Colombia
  • Jhon A. Gómez-Portilla Semillero de Investigación INMED, Facultad de Ingeniería, Universidad Militar Nueva Granada, Bogotá, Colombia https://orcid.org/0000-0002-8613-854X

En este proyecto se propone usar un inyector de código abierto denominado “Poseidón” para una bioimpresora, introduciendo la novedad del control remoto mediante el desarrollo de una aplicación web. Se propone flexibilizar el acceso a distancia para los procedimientos llevados a cabo en una bioimpresora, facilitando la creación de tejidos y órganos mediante el uso de la tecnología Smart Medicine propuesta. Se desarrolló un inyector funcional a nivel mecánico y electrónico el cual permite la microextrusión con jeringa; para lo cual se emplearán algoritmos de control de movimiento que garantizarán el desplazamiento preciso y suave; ejecutando una comunicación remota confiable con la bioimpresora; de acuerdo a lo anterior se diseñará una interfaz gráfica de usuario para llevar a cabo el control del inyector.

This project proposes to use an open-source injector called “Poseidon” for a bioprinter, introducing the novelty of remote control through the development of a web application. It is proposed to make remote access for procedures carried out in a bioprinter more flexible, facilitating the creation of tissues and organs through the use of the proposed Smart Medicine technology. A functional injector was developed at a mechanical and electronic level which allows microextrusion with a syringe; for which motion control algorithms will be used to guarantee precise and smooth displacement; executing a reliable remote communication with the bioprinter; according to the above, a graphical user interface will be designed to carry out the control of the injector.

Referencias

[1] Okubo, N., Qureshi, A. J., Dalgarno, K., Goh, K. L., & Derebail, S. Cost-effective microvalve-assisted bioprinter for tissue engineering. Bioprinting, 13, e00043, 2019. DOI: https://doi.org/10.1016/j.bprint.2019.e00043

[2] Koch, F., Thaden, O., Tröndle, K., Zengerle, R., Zimmermann, S., & Koltay, P. Open-source hybrid 3D-bioprinter for simultaneous printing of thermoplastics and hydrogels. HardwareX, 10, e00230, 2021. DOI: https://doi.org/10.1016/j.ohx.2021.e00230

[3] Bharadwaj, T., & Verma, D. Open source bioprinters: Revolutionizing the accessibility of biofabrication. Bioprinting, 23, e00155, 2021. DOI: https://doi.org/10.1016/j.bprint.2021.e00155

[4] Moukachar, A., Harvey, K., Roke, E., Sloan, K., Pool, C., Moola, S., ... & Castell, O. Development and evaluation of a low‐cost lego 3D bioprinter: from building‐blocks to building blocks of life. Advanced Materials Technologies, 8(6), 2100868, 2023. DOI: https://doi.org/10.1002/admt.202100868

[5] Boutros, M. J. Ingeniería de tejidos: una visión general. IEEE Revista de Ingeniería Biomédica, 17(3), 77-84, 1998.

[6] Chae, H. J., Lee, S., Son, H., Han, S., & Lim, T. Generating 3D bio-printable patches using wound segmentation and reconstruction to treat diabetic foot ulcers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2539-2549), 2022. DOI: https://doi.org/10.1109/CVPR52688.2022.00257

[7] Choudhury, D., Anand, S., & Naing, M. W. The arrival of commercial bioprinters Towards 3D bioprinting revolution!. International Journal of Bioprinting, 4(2), 2018. DOI: https://doi.org/10.18063/IJB.v4i2.139

[8] Duan, B., Hockaday, L. A., Kang, K. H., & Butcher, J. T. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A, 101(5), 1255-1264, 2013. DOI: https://doi.org/10.1002/jbm.a.34420

[9] Engberg, A., Stelzl, C., Eriksson, O., O’Callaghan, P., & Kreuger, J. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting. Scientific Reports, 11(1), 21547, 2021. DOI: https://doi.org/10.1038/s41598-021-00931-1

[10] Gao, Y., Moshayedi, A. J., Sanatizadeh, E., Behfarnia, P., Kolamroudi, M. K., Semirumi, D. T., & Yusof, M. Y. P. M. Analysis of amorphous structure with polycaprolactone-hydroxyapatite nanoparticles fabricated by 3D bioprinter technique for bone tissue engineering. Ceramics International, 49(10), 16053-16060, 2023. DOI: https://doi.org/10.1016/j.ceramint.2023.01.203

[11] Gusmão, A., Sanjuan-Alberte, P., Ferreira, F. C., & Leite, M. Design, fabrication, and testing of a low-cost extrusion-based 3D bioprinter for thermo-sensitive and light sensitive hydrogels. Materials Today: Proceedings, 70, 148-154, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.010

[12] Hinton, T. J., Hudson, A., Pusch, K., Lee, A. & Feinberg, A. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding. Nature Communications, 11(1), 1-11, 2020. DOI: https://doi.org/10.1021/acsbiomaterials.6b00170

[13] Kolesky, D. B., Truby, R. L., Gladman, A. S., Busbee, T. A., Homan, K. A., & Lewis, J. A. Bioprinting 3D vascularized tissues. Advanced Materials, 26(19), 3124-3130, 2014. DOI: https://doi.org/10.1002/adma.201305506

[14] Lanaro, M., Luu, A., Lightbody-Gee, A., Hedger, D., Powell, S. K., Holmes, D. W., & Woodruff, M. A. Systematic design of an advanced open-source 3D bioprinter for extrusion and electrohydrodynamic-based processes. The International Journal of Advanced Manufacturing Technology, 113, 2539-2554, 2021. DOI: https://doi.org/10.1007/s00170-021-06634-1

[15] McElheny, C., Hayes, D., & Devireddy, R. Design and fabrication of a low-cost three-dimensional bioprinter. Journal of Medical Devices, 11(4), 041001, 2017. DOI: https://doi.org/10.1115/1.4037259

[16] Mironov, V., Trusk, T., Kasyanov, V., Little, S., Swaja, R., & Markwald, R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication, 1(2), 022001, 2009. DOI: https://doi.org/10.1088/1758-5082/1/2/022001

[17] Mun, K. S., Kim, H., Pandol, S. J., & Naren, A. P. Mo1122: A novel approach to creating 3D matrix using a 3D bioprinter to study CFTR related disorders. Gastroenterology, 162(7), S-706, 2022. DOI: https://doi.org/10.1016/S0016-5085(22)61655-X

[18] Ozbolat, I. T., Chen, H., & Yu, Y. Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robotics and Computer-Integrated Manufacturing, 30(3), 295-304, 2014. DOI: https://doi.org/10.1016/j.rcim.2013.10.005

[19] Pereira, F. D. A. S., Parfenov, V., Khesuani, Y. D., Ovsianikov, A., & Mironov, V. Commercial 3D bioprinters. 3D Printing and Biofabrication. Springer International Publishing, Cham, Switzerland, 535-549, 2018. DOI: https://doi.org/10.1007/978-3-319-45444-3_12

[20] Tashman, J. W., Shiwarski, D. J., & Feinberg, A. W. Development of a high performance open-source 3D bioprinter. Scientific Reports, 12(1), 22652, 2022. DOI: https://doi.org/10.1038/s41598-022-26809-4

[21] Tong, A., Pham, Q. L., Abatemarco, P., Mathew, A., Gupta, D., Iyer, S., & Voronov, R. Review of low-cost 3D bioprinters: State of the market and observed future trends. SLAS Technology: Translating Life Sciences Innovation, 26(4), 333-366, 2021. DOI: https://doi.org/10.1177/24726303211020297

[22] Utama, R. H., Atapattu, L., O'Mahony, A. P., Fife, C. M., Baek, J., Allard, T., ... & Gooding, J. J. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience, 23(10), 2020. DOI: https://doi.org/10.1016/j.isci.2020.101621

[23] Wagner, M., Karner, A., Gattringer, P., Buchegger, B., & Hochreiner, A. A super low-cost bioprinter based on DVD-drive components and a raspberry pi as controller. Bioprinting, 23, e00142, 2021. DOI: https://doi.org/10.1016/j.bprint.2021.e00142

Cómo citar

IEEE

[1]
D. L. Sandoval-Buitrago, L. F. Lugo-Molina, M. J. Jiménez-Ortiz, y J. A. Gómez-Portilla, «Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP», DYNA, vol. 92, n.º 237, pp. 123–129, may 2025.

ACM

[1]
Sandoval-Buitrago, D.L., Lugo-Molina, L.F., Jiménez-Ortiz, M.J. y Gómez-Portilla, J.A. 2025. Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP. DYNA. 92, 237 (may 2025), 123–129. DOI:https://doi.org/10.15446/dyna.v92n237.117851.

ACS

(1)
Sandoval-Buitrago, D. L.; Lugo-Molina, L. F.; Jiménez-Ortiz, M. J.; Gómez-Portilla, J. A. Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP. DYNA 2025, 92, 123-129.

APA

Sandoval-Buitrago, D. L., Lugo-Molina, L. F., Jiménez-Ortiz, M. J. & Gómez-Portilla, J. A. (2025). Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP. DYNA, 92(237), 123–129. https://doi.org/10.15446/dyna.v92n237.117851

ABNT

SANDOVAL-BUITRAGO, D. L.; LUGO-MOLINA, L. F.; JIMÉNEZ-ORTIZ, M. J.; GÓMEZ-PORTILLA, J. A. Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP. DYNA, [S. l.], v. 92, n. 237, p. 123–129, 2025. DOI: 10.15446/dyna.v92n237.117851. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/117851. Acesso em: 27 dic. 2025.

Chicago

Sandoval-Buitrago, Dina L., Luis F. Lugo-Molina, María J. Jiménez-Ortiz, y Jhon A. Gómez-Portilla. 2025. «Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP». DYNA 92 (237):123-29. https://doi.org/10.15446/dyna.v92n237.117851.

Harvard

Sandoval-Buitrago, D. L., Lugo-Molina, L. F., Jiménez-Ortiz, M. J. y Gómez-Portilla, J. A. (2025) «Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP», DYNA, 92(237), pp. 123–129. doi: 10.15446/dyna.v92n237.117851.

MLA

Sandoval-Buitrago, D. L., L. F. Lugo-Molina, M. J. Jiménez-Ortiz, y J. A. Gómez-Portilla. «Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP». DYNA, vol. 92, n.º 237, mayo de 2025, pp. 123-9, doi:10.15446/dyna.v92n237.117851.

Turabian

Sandoval-Buitrago, Dina L., Luis F. Lugo-Molina, María J. Jiménez-Ortiz, y Jhon A. Gómez-Portilla. «Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP». DYNA 92, no. 237 (mayo 9, 2025): 123–129. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/117851.

Vancouver

1.
Sandoval-Buitrago DL, Lugo-Molina LF, Jiménez-Ortiz MJ, Gómez-Portilla JA. Fabricación de inyector para bioimpresora de código abierto, controlado a distancia por medio de una APP. DYNA [Internet]. 9 de mayo de 2025 [citado 27 de diciembre de 2025];92(237):123-9. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/117851

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

159

Descargas

Los datos de descargas todavía no están disponibles.