Passengers boarding at the airport and their routes a) Passengers; b) Routes for them

Publicado

2025-08-01

Research on airport reservation bus scheduling

Investigación sobre la programación de autobuses de reserva en aeropuertos

DOI:

https://doi.org/10.15446/dyna.v92n238.118471

Palabras clave:

airport reservation bus, differential pricing, vehicle scheduling, improved adaptive genetic algorithm (en)
autobús con reserva de aeropuerto, tarificación diferencial, programación de vehículos, algoritmo genético adaptativo mejorado (es)

Descargas

Autores/as

Passengers face high costs or multiple transfers when they arrive or depart from the airport. In addition, most transportation modes in a city typically stop operating from midnight to early morning, making it impossible for passengers to enjoy quality and inexpensive services. Considering the passenger detour and muti-types, this paper sets up the passenger detour rebate mechanism and constructs the Airport Reservation Bus (ARB) scheduling model to maximize the profit of ARB enterprise. Meanwhile, an Improved Adaptive Genetic Algorithm (IAGA) is designed to solve the model, where the crossover and mutation operations are optimized to prevent it from falling into local optimum. Finally, a case study shows that ARB costs at least 39% less than taxis, with slightly longer travel time. Compared to traditional GA, IAGA reduced running time by more than 12%, showing faster convergence.

Los pasajeros afrontan altos costos o múltiples trasbordos al viajar al aeropuerto. Además, la mayoría de los medios de transporte urbano cesan su operación de medianoche a primera hora, privando a los pasajeros de servicios económicos y de calidad. Considerando desvíos y tipos mixtos de vehículos, se propone un mecanismo de reembolso por desvío y un modelo de programación de autobuses de reserva aeroportuaria (ARB) para maximizar la rentabilidad. Se diseña un Algoritmo Genético Adaptativo Mejorado (IAGA) optimizando cruce y mutación para evitar el óptimo local. Los casos muestran que el ARB cuesta 39% menos que los taxis con un ligero aumento de tiempo. En comparación con el AG tradicional, el IAGA redujo el tiempo de ejecución en más del 12%, lo que demuestra una convergencia más rápida.

Referencias

[1] Zhou, J., and Lam, W.H., A bi-level programming approach—Optimal transit fare under line capacity constraints. Journal of advanced transportation, 35(2), pp. 105-124, 2001. DOI: https://doi.org/10.1002/atr.5670350204

[2] Borndörfer, R., Karbstein, M., and Pfetsch M.E., Models for fare planning in public transport, Discrete Applied Mathematics, 160(18), pp. 2591-2605, 2012. DOI: https://doi.org/10.1016/j.dam.2012.02.027

[3] Emele, C.D., Oren, N., Zeng, C., Wright, S., Velaga, N., Nelson, J., Norman T.J., and Farrington, J., Agent-Driven variable pricing in flexible rural transport services, Communications in Computer and Information Science, 365, pp. 26-35, 2013. DOI: https://doi.org/10.1007/978-3-642-38061-7_4

[4] Kamel, I., Shalaby, A., and Abdulhai, B., A modelling platform for optimizing time-dependent transit fares in large-scale multimodal networks, Transport Policy, 92, pp. 38-54, 2020. DOI: https://doi.org/10.1016/j.tranpol.2020.04.002

[5] Guo, Q., Sun, Y., Schonfeld, P., and Li, Z., Time-dependent transit fare optimization with elastic and spatially distributed demand, Transportation Research Part A: Policy and Practice, 148, pp. 353-378, 2021. DOI: https://doi.org/10.1016/j.tra.2021.04.002

[6] Smith B.L., Demetsky M.J. and Durvasula P.K., A multiobjective optimization model for flexroute transit service design, Journal of Public Transportation, 6(1), pp. 81-100, 2003. DOI: https://doi.org/10.5038/2375-0901.6.1.5

[7] Gebeyehu, M., and Takano, S.E., Demand responsive route design: GIS application to link downtowns with expansion areas[J]. Journal of Public Transportation, 11(1), pp. 43-62, 2008. DOI: https://doi.org/10.5038/2375-0901.11.1.3

[8] Ye, Q., Ma, C., He, R., Xiao, Q., and Zhang, W., Multi-objective optimisation for taxi ridesharing route based on non-dominated sorting genetic algorithm, Int. J. of Wireless and Mobile Computing, 8(3), pp. 262-270, 2015. DOI: https://doi.org/10.1504/IJWMC.2015.069409

[9] Li, H. and Kim, S., Efficient route planning for real-time demand-responsive transit, Computers, Materials & Continua, 79(1), pp. 473-492, 2024. DOI: https://doi.org/10.32604/cmc.2024.048402

[10] Golden, B., Assad, A., Levy, L., and Gheysens, F., The fleet size and mix vehicle routing problem, Computers & Operations Research, 11(1), pp. 49-66, 1984. DOI: https://doi.org/10.1016/0305-0548(84)90007-8

[11] Tarantilis, C.D., Kiranoudis, C.T., and Vassiliadis, V.S., A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem, Journal of the Operational Research Society, 54(1), pp. 65-71, 2003. DOI: https://doi.org/10.1057/palgrave.jors.2601443

[12] Dondo, R.G. and Cerdá, J., A hybrid local improvement algorithm for large-scale multi-depot vehicle routing problems with time windows, Computers & Chemical Engineering, 33(2), pp. 513-530, 2009. DOI: https://doi.org/10.1016/j.compchemeng.2008.10.003

[13] Barkaoui, M. and Gendreau, M., An adaptive evolutionary approach for real-time vehicle routing and dispatching, Computers & Operations Research, 40(7), pp. 1766-1776, 2013. DOI: https://doi.org/10.1016/j.cor.2013.01.022

[14] Goeke, D. and Schneider, M., Routing a mixed fleet of electric and conventional vehicles, European Journal of Operational Research, 245(1), pp. 81-99, 2015. DOI: https://doi.org/10.1016/j.ejor.2015.01.049

[15] Gasque, D., and Munari, P., Metaheuristic, models and software for the heterogeneous fleet pickup and delivery problem with split loads, Journal of Computational Science, 59, 2022. DOI: https://doi.org/10.1016/j.jocs.2021.101549

[16] Wang, L, Zeng, L, Ma, W, et al. Integrating passenger incentives to optimize routing for demand-responsive customized bus systems, IEEE Access, 9, pp. 21507-21521, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3055855

[17] Han, S., Fu, H., Zhao, J., et al. Modelling and simulation of hierarchical scheduling of real‐time responsive customised bus, IET Intelligent Transport Systems, 14(12), pp. 1615-1625, 2020. DOI: https://doi.org/10.1049/iet-its.2020.0138

[18] Zhang, J., Huang, A., Jiang, R., et al. Flexible scheduling model of bus services between venues of the Beijing winter olympic games, Journal of Advanced Transportation, 2022(1), art. 2134806, 2022. DOI: https://doi.org/10.1155/2022/2134806

Cómo citar

IEEE

[1]
J. Li, L. Chen, X. Li, y H. Liu, «Research on airport reservation bus scheduling», DYNA, vol. 92, n.º 238, pp. 9–18, jul. 2025.

ACM

[1]
Li, J., Chen, L., Li, X. y Liu, H. 2025. Research on airport reservation bus scheduling. DYNA. 92, 238 (jul. 2025), 9–18. DOI:https://doi.org/10.15446/dyna.v92n238.118471.

ACS

(1)
Li, J.; Chen, L.; Li, X.; Liu, H. Research on airport reservation bus scheduling. DYNA 2025, 92, 9-18.

APA

Li, J., Chen, L., Li, X. & Liu, H. (2025). Research on airport reservation bus scheduling. DYNA, 92(238), 9–18. https://doi.org/10.15446/dyna.v92n238.118471

ABNT

LI, J.; CHEN, L.; LI, X.; LIU, H. Research on airport reservation bus scheduling. DYNA, [S. l.], v. 92, n. 238, p. 9–18, 2025. DOI: 10.15446/dyna.v92n238.118471. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/118471. Acesso em: 26 dic. 2025.

Chicago

Li, Jin, Long Chen, Xiaowen Li, y Huasheng Liu. 2025. «Research on airport reservation bus scheduling». DYNA 92 (238):9-18. https://doi.org/10.15446/dyna.v92n238.118471.

Harvard

Li, J., Chen, L., Li, X. y Liu, H. (2025) «Research on airport reservation bus scheduling», DYNA, 92(238), pp. 9–18. doi: 10.15446/dyna.v92n238.118471.

MLA

Li, J., L. Chen, X. Li, y H. Liu. «Research on airport reservation bus scheduling». DYNA, vol. 92, n.º 238, julio de 2025, pp. 9-18, doi:10.15446/dyna.v92n238.118471.

Turabian

Li, Jin, Long Chen, Xiaowen Li, y Huasheng Liu. «Research on airport reservation bus scheduling». DYNA 92, no. 238 (julio 31, 2025): 9–18. Accedido diciembre 26, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/118471.

Vancouver

1.
Li J, Chen L, Li X, Liu H. Research on airport reservation bus scheduling. DYNA [Internet]. 31 de julio de 2025 [citado 26 de diciembre de 2025];92(238):9-18. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/118471

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

334

Descargas

Los datos de descargas todavía no están disponibles.