Deposition by drop casting technique for the buffer layer and the selected NaBFO adsorbent layer

Publicado

2025-05-12

A new thin-film solar cell prototype based on Na-doped BiFeO3

Un nuevo prototipo de célula solar de capa fina basada en BiFeO3 dopado con Na

DOI:

https://doi.org/10.15446/dyna.v92n237.118481

Palabras clave:

Perovskite, ferroelectricity, voltage-current, p-type doping, efficiency (en)
Perovskita, ferroelectricidad, tensión-corriente, dopaje tipo p, eficiencia (es)

Descargas

Autores/as

  • Adán de Jesús Bautista-Morantes Universidad Pedagógica y Tecnológica de Colombia, Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales – INCITEMA, Tunja, Colombia https://orcid.org/0009-0008-1025-8554
  • Carlos Ordulio Calderón-Carvajal Universidad Pedagógica y Tecnológica de Colombia, Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales – INCITEMA, Tunja, Colombia https://orcid.org/0000-0003-3978-7691
  • Jairo Alberto Gómez-Cuaspud Universidad Pedagógica y Tecnológica de Colombia, Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales – INCITEMA, Tunja, Colombia https://orcid.org/0000-0002-9645-516X
  • Enrique Vera-López Universidad Pedagógica y Tecnológica de Colombia, Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales – INCITEMA, Tunja, Colombia https://orcid.org/0000-0003-4150-9308

The development of thin film photovoltaic devices based on third and fourth generation materials has attracted the attention of the scientific community worldwide, finding the need to experiment among different assemblies and structurally modified materials to find the best efficiency of converting solar energy into electrical energy. Therefore, in this work, the efficiency of three prototypes of thin-film photovoltaic perovskite solar cells (PSCs) constructed using three sodium-doped samples of BiFeO3 as absorber layers has been evaluated. The assembly was carried out based on an n-i-p architecture obtaining thin-films with glass/ITO/CdS/perovskite/Au/Mo/glass general configuration. The study has led to the conclusion that the efficiency of the assembled photovoltaic devices increases with the insertion of sodium and that the proposed configuration is functional for the construction of thin-film perovskite solar cells (PSCs).

El desarrollo de dispositivos fotovoltaicos de película delgada basados en materiales de tercera y cuarta generación ha atraído la atención de la comunidad científica mundial, encontrando la necesidad de experimentar entre diferentes ensamblajes y materiales estructuralmente modificados para encontrar la mejor eficiencia de conversión de energía solar en energía eléctrica. Por ello, en este trabajo se ha evaluado la eficiencia de tres prototipos de células solares fotovoltaicas de capa delgada de perovskita (PSCs) construidas utilizando tres muestras dopadas con sodio de BiFeO3 como capa absorbente. Los ensamblajes se realizaron en base a una arquitectura n-i-p obteniéndose películas delgadas con configuración general vidrio/ITO/CdS/perovskita/Au/Mo/vidrio. El estudio ha permitido concluir que la eficiencia de los dispositivos fotovoltaicos ensamblados aumenta con la inserción de sodio y que la configuración propuesta es funcional para la construcción de células solares de capa delgada de perovskita (PSCs).

Referencias

[1] Lee, T.D., and Ebong, A.U., A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 70, pp. 1286–1297, 2017. DOI: https://doi.org/10.1016/j.rser.2016.12.028.

[2] Zeman, M., and Schropp, R.E.I., 1.17 - Thin-Film Silicon PV Technology. Comprehensive Renewable Energy, A. Sayigh, Ed., Oxford: Elsevier, 2012, pp. 389–398. DOI: https://doi.org/10.1016/B978-0-08-087872-0.00119-0.

[3] Efaz, E.T. et al., A review of primary technologies of thin-film solar cells. Engineering Research Express, 3(3), art. 032001, 2021. DOI: https://doi.org/10.1088/2631-8695/ac2353.

[4] Tanimoto, H., Arai, H., Mizubayashi, H., Yamanaka, M. and Sakata, I., Light-induced hydrogen evolution from hydrogenated amorphous silicon: Hydrogen diffusion by formation of bond centered hydrogen. J Appl Phys, 115(7), art. 073503, 2014. DOI: https://doi.org/10.1063/1.4865166.

[5] Schüttauf, J.W. et al., Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells. Solar Energy Materials and Solar Cells, 133, pp. 163–169, 2015. DOI: https://doi.org/10.1016/j.solmat.2014.11.006.

[6] Candelise, C., Winskel, M. and Gross, R., Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity. Progress in Photovoltaics: Research and Applications, 20(6, pp. 816–831, 2012. DOI: https://doi.org/10.1002/pip.2216.

[7] Fthenakis, V.M. and Moskowitz, P.D., Thin-film Photovoltaic Cells: Health and Environmental Issues in their Manufacture Use and Disposal. Progress in Photovoltaics: Research and Applications, 3(5, pp. 295–306, 1995. DOI: https://doi.org/10.1002/pip.4670030504.

[8] Khalid, S., Sultan, M., Ahmed, E. and Ahmed, W., Chapter 1 - Third-generation solar cells. Emerging Nanotechnologies for Renewable Energy, Elsevier, 2021, pp. 3–35. DOI: https://doi.org/10.1016/B978-0-12-821346-9.00019-5.

[9] Rehman, F. et al., Fourth-generation solar cells: a review. Energy Advances, 2(9), pp. 1239–1262, 2023. DOI: https://doi.org/10.1039/D3YA00179B.

[10] Faridi, A.W. et al., Synthesis and Characterization of High-Efficiency Halide Perovskite Nanomaterials for Light-Absorbing Applications. Ind Eng Chem Res, 62(11, pp. 4494–4502, 2023, DOI: https://doi.org/10.1021/acs.iecr.2c00416.

[11] Bello, S., Urwick, A., Bastianini, F., Nedoma, A.J. and Dunbar, A., An introduction to perovskites for solar cells and their characterisation. Energy Reports, 8, pp. 89–106, 2022. DOI: https://doi.org/10.1016/j.egyr.2022.08.205.

[12] Li, H. et al., Photoferroelectric perovskite solar cells: Principles, advances and insights. Nano Today, 37, p. 101062, 2021. DOI: https://doi.org/10.1016/j.nantod.2020.101062.

[13] Röhm, H., Leonhard, T., Schulz, A.D., Wagner, S., Hoffmann, M.J. and Colsmann, A., Ferroelectric Properties of Perovskite Thin Films and Their Implications for Solar Energy Conversion. Advanced Materials, 31(26), art. 1806661, 2019. DOI: https://doi.org/10.1002/adma.201806661.

[14] Luo, Q., 8 - Applications in photovoltaics. Solution Processed Metal Oxide Thin Films for Electronic Applications, Z. Cui and G. Korotcenkov, Eds., Elsevier, pp. 109–140, 2020. DOI: https://doi.org/10.1016/B978-0-12-814930-0.00008-6.

[15] Zhao, Q., Zhou, B., Luo, L., Duan, Z., Xie, Z. and Hu, Y., A literature overview of cell layer materials for perovskite solar cells. MRS Commun, 2023. DOI: https://doi.org/10.1557/s43579-023-00467-7.

[16] Hossain, M.K. et al., An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci Rep, 13(1), art. 2521, 2023. DOI: https://doi.org/10.1038/s41598-023-28506-2.

[17] Shpatz, A., and Etgar, L., Study of electron transport layer-free and hole transport layer-free inverted perovskite solar cells. Solar RRL, 6(1), art. 2100578, 2022. DOI: https://doi.org/10.1002/solr.202100578.

[18] Dong, J. et al., Efficient perovskite solar cells employing a simply-processed CdS electron transport layer. J Mater Chem C Mater, 5(38), pp. 10023–10028, 2017. DOI: https://doi.org/10.1039/C7TC03343E.

[19] Luo, C. et al., Constructing CdS-based electron transporting layers with efficient electron extraction for perovskite solar cells. IEEE J Photovolt, 11(4), pp. 1014–1021, 2021. DOI: https://doi.org/10.1109/JPHOTOV.2021.3077445.

[20] Shetty, C., Veena Devi Shastrimath, V. and Bairy, R., Tuning the structural, morphological and optical properties of Sr-doped BFO thin films. Phase Transitions, 95(3), pp. 202–211, 2022. DOI: https://doi.org/10.1080/01411594.2022.2032056.

[21] Renuka, H. et al., Enhanced photovoltaic response in ferroelectric Ti-doped BFO heterojunction through interface engineering for building integrated applications. Solar Energy, 225, pp. 863–874, 2021. DOI: https://doi.org/10.1016/j.solener.2021.08.002.

[22] Raj, A. et al., Comparative analysis of ‘La’ modified BiFeO3-based perovskite solar cell devices for high conversion efficiency. Ceram Int, 49(1), pp. 1317–1327, 2023. DOI: https://doi.org/10.1016/j.ceramint.2022.09.112.

[23] Gebhardt, J. and Rappe, A.M., Doping of BiFeO3: a comprehensive study on substitutional doping. Phys Rev B, 98(12), art. 125202, 2018. DOI: https://doi.org/10.1103/PhysRevB.98.125202.

[24] Chang, S., Chen, C., Jiang, X., Zhao, C. and Chen, J., Improved chemical defects, domain structure and electrical properties of BiFeO3–BaTiO3 lead-free ceramics by simultaneous Na/Bi codoping and quenching process. Ceram Int, 49(10), pp. 16191–16198, 2023. DOI: https://doi.org/10.1016/j.ceramint.2023.01.217.

[25] Mao, W. et al., Effect of Ca doping on photovoltaic effect of BiFeO3. Applied Physics A, 127(7), art. 508, 2021. DOI: https://doi.org/10.1007/s00339-021-04651-1.

[26] Wang, X. et al., Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles. Journal of Nanoparticle Research, 17(5), art. 209, 2015. DOI: https://doi.org/10.1007/s11051-015-3018-1.

[27] Zhang, H. et al., Novel behaviors of multiferroic properties in Na-Doped BiFeO3 nanoparticles. Nanoscale, 6(18), pp. 10831–10838, 2014. DOI: https://doi.org/10.1039/C4NR02557A.

[28] Li, J. and Guan, X.Y., Structural and optical properties of Ce doped BiFeO3 nanoparticles via sol–gel method. Micro Nano Lett, 14(13), pp. 1307–1311, 2019. DOI: https://doi.org/10.1049/mnl.2019.0236.

[29] Tang, P., Cao, M., Yu, J., Wang, L. and Zhang, D., Influence of Ba–Cr substitution on structural, optical and magnetic properties of nanocrystalline BiFeO3. Journal of Materials Science: Materials in Electronics, 32(8), pp. 11028–11042, 2021. DOI: https://doi.org/10.1007/s10854-021-05762-4.

[30] Ameer, S., Jindal, K., Tomar, M., Jha, P.K. and Gupta, V., Effect of Li doping on the electronic and magnetic properties of BiFeO3 by first principles. Integrated Ferroelectrics, 193(1), pp. 123–128, 2018. DOI: https://doi.org/10.1080/10584587.2018.1514875.

[31] Kumar, A.M., Peter, I.J., Ramachandran, K., Mayandi, J. and Jayakumar, K., Influence of Al-Cu doping on the efficiency of BiFeO3 based perovskite solar cell (PSC). Mater Today Proc, 35, pp. 62–65, 2021. DOI: https://doi.org/10.1016/j.matpr.2019.05.454.

[32] Chatterjee, S., Bera, A. and Pal, A.J., p–i–n Heterojunctions with BiFeO3 Perovskite Nanoparticles and p- and n-Type Oxides: Photovoltaic Properties. ACS Appl Mater Interfaces, 6(22), pp. 20479–20486, 2014. DOI: https://doi.org/10.1021/am506066m.

[33] Sharma, S., Reshi, H.A., Siqueiros, J.M. and Raymond Herrera, O., Stability of rhombohedral structure and improved dielectric and ferroelectric properties of Ba, Na, Ti doped BiFeO3 solid solutions. Ceram Int, 48(2), pp. 1805–1813, 2022. DOI: https://doi.org/10.1016/j.ceramint.2021.09.261.

[34] Si, S., Deng, H., Wang, T., Yang, P. and Chu, J., Structural phase transition, optical bandgap, interband electronic transition, and improved magnetism in bivalent Ca-, Sr-, Pb-, and Ba-doped BiFeO3 ceramics. Journal of Materials Science: Materials in Electronics, 31(11), pp. 8464–8471, 2020. DOI: https://doi.org/10.1007/s10854-020-03381-z.

[35] Bautista-Morantes, A.B., Calderón-Carvajal, C.O., Gómez-Cuaspud, J.A. and Vera-López, E., Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3. Mater Sci Energy Technol, 2023. DOI: https://doi.org/10.1016/j.mset.2023.10.003.

[36] Kumar, A., Shkir, M., Somaily, H.H., Singh, K.L., Choudhary, B.C. and Tripathi, S.K., A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin films. Physica B Condens Matter, 630, art. 413678, 2022. DOI: https://doi.org/10.1016/j.physb.2022.413678.

[37] Kumar, A., Zhang, Y., Li, D. and Compton, R.G., A mini-review: How reliable is the drop casting technique? Electrochem commun, 121, art. 106867, 2020. DOI: https://doi.org/10.1016/j.elecom.2020.106867.

[38] Kambezidis, H.D., 3.02 - The Solar Resource. Comprehensive Renewable Energy (Second Edition), T. M. Letcher, Ed., Oxford: Elsevier, pp. 26–117, 2022. DOI: https://doi.org/10.1016/B978-0-12-819727-1.00002-9.

[39] Markvart, T. and Castañer, L., Chapter I-1-A - Principles of solar cell operation. McEvoy’s Handbook of Photovoltaics (3rd Ed.). Academic Press, 2018, pp. 3–28. DOI: https://doi.org/10.1016/B978-0-12-809921-6.00001-X.

[40] Ceballos-Sanchez, O. et al., Study of BiFeO3 thin film obtained by a simple chemical method for the heterojunction-type solar cell design. J Alloys Compd, 832, art. 154923, 2020. DOI: https://doi.org/10.1016/j.jallcom.2020.154923.

[41] Xie, Z. et al., Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film. Appl Phys Lett, 115(11), art. 112902, 2019. DOI: https://doi.org/10.1063/1.5120484.

[42] Fan, Z., Yao, K. and Wang, J., Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure. Appl Phys Lett, 105(16), art. 162903, 2014. DOI: https://doi.org/10.1063/1.4899146.

[43] Sattarian, H., Tohidi, T. and Rahmatallahpur, Sh., Effect of TEA on characteristics of CdS/PbS thin film solar cells prepared by CBD, [Online]. Materials Science-Poland, 34, pp. 540–547, 2016. [visit: January 25, 2025], Available at: https://api.semanticscholar.org/CorpusID:100354693. DOI: https://doi.org/10.1515/msp-2016-0072

[44] Rashid, H. et al., Physical and electrical properties of molybdenum thin films grown by DC magnetron sputtering for photovoltaic application. Results Phys, 14, art. 102515, 2019. DOI: https://doi.org/10.1016/j.rinp.2019.102515.

[45] Hajjiah, A., Badran, H., Kandas, I. and Shehata, N., Perovskite solar cell with added Gold/Silver Nanoparticles: enhanced optical and electrical characteristics. Energies (Basel), 13(15), art. 153854, 2020. DOI: https://doi.org/10.3390/en13153854.

[46] Lakmal, A.A.I., Kumarasinghe, R., Seneviratne, V.A., Thanihaichelvan, M. and Dassanayake, B.S., Effect of CdS layer thickness on thermally evaporated-CdS/CdTe solar cell efficiency. Journal of Materials Science: Materials in Electronics, 33(19), pp. 15627–15637, 2022. DOI: https://doi.org/10.1007/s10854-022-08467-4.

[47] Hubbard, S., Recombination. Photovoltaic Solar Energy, 2016, pp. 39–46. DOI: https://doi.org/10.1002/9781118927496.ch5.

[48] Khan, M. et al., Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites. Sci Rep, 13(1), art. 3123, 2023. DOI: https://doi.org/10.1038/s41598-023-30000-8.

[49] Singh, J.K., Mandal, S.K., and Banerjee, G., Refractive index of different perovskite materials. J Mater Res, 36(9), pp. 1773–1793, 2021. DOI: https://doi.org/10.1557/s43578-021-00257-8.

[50] Kim, M.S., Lee, J.H. and Kwak, M.K., Review: surface texturing methods for solar cell efficiency enhancement. International Journal of Precision Engineering and Manufacturing, 21(7), pp. 1389–1398, 2020. DOI: https://doi.org/10.1007/s12541-020-00337-5.

Cómo citar

IEEE

[1]
A. de J. Bautista-Morantes, C. O. Calderón-Carvajal, J. A. Gómez-Cuaspud, y E. Vera-López, «A new thin-film solar cell prototype based on Na-doped BiFeO3», DYNA, vol. 92, n.º 237, pp. 30–37, may 2025.

ACM

[1]
Bautista-Morantes, A. de J., Calderón-Carvajal, C.O., Gómez-Cuaspud, J.A. y Vera-López, E. 2025. A new thin-film solar cell prototype based on Na-doped BiFeO3. DYNA. 92, 237 (may 2025), 30–37. DOI:https://doi.org/10.15446/dyna.v92n237.118481.

ACS

(1)
Bautista-Morantes, A. de J.; Calderón-Carvajal, C. O.; Gómez-Cuaspud, J. A.; Vera-López, E. A new thin-film solar cell prototype based on Na-doped BiFeO3. DYNA 2025, 92, 30-37.

APA

Bautista-Morantes, A. de J., Calderón-Carvajal, C. O., Gómez-Cuaspud, J. A. & Vera-López, E. (2025). A new thin-film solar cell prototype based on Na-doped BiFeO3. DYNA, 92(237), 30–37. https://doi.org/10.15446/dyna.v92n237.118481

ABNT

BAUTISTA-MORANTES, A. de J.; CALDERÓN-CARVAJAL, C. O.; GÓMEZ-CUASPUD, J. A.; VERA-LÓPEZ, E. A new thin-film solar cell prototype based on Na-doped BiFeO3. DYNA, [S. l.], v. 92, n. 237, p. 30–37, 2025. DOI: 10.15446/dyna.v92n237.118481. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/118481. Acesso em: 25 dic. 2025.

Chicago

Bautista-Morantes, Adán de Jesús, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, y Enrique Vera-López. 2025. «A new thin-film solar cell prototype based on Na-doped BiFeO3». DYNA 92 (237):30-37. https://doi.org/10.15446/dyna.v92n237.118481.

Harvard

Bautista-Morantes, A. de J., Calderón-Carvajal, C. O., Gómez-Cuaspud, J. A. y Vera-López, E. (2025) «A new thin-film solar cell prototype based on Na-doped BiFeO3», DYNA, 92(237), pp. 30–37. doi: 10.15446/dyna.v92n237.118481.

MLA

Bautista-Morantes, A. de J., C. O. Calderón-Carvajal, J. A. Gómez-Cuaspud, y E. Vera-López. «A new thin-film solar cell prototype based on Na-doped BiFeO3». DYNA, vol. 92, n.º 237, mayo de 2025, pp. 30-37, doi:10.15446/dyna.v92n237.118481.

Turabian

Bautista-Morantes, Adán de Jesús, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, y Enrique Vera-López. «A new thin-film solar cell prototype based on Na-doped BiFeO3». DYNA 92, no. 237 (mayo 9, 2025): 30–37. Accedido diciembre 25, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/118481.

Vancouver

1.
Bautista-Morantes A de J, Calderón-Carvajal CO, Gómez-Cuaspud JA, Vera-López E. A new thin-film solar cell prototype based on Na-doped BiFeO3. DYNA [Internet]. 9 de mayo de 2025 [citado 25 de diciembre de 2025];92(237):30-7. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/118481

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

284

Descargas

Los datos de descargas todavía no están disponibles.