Publicado
Integration of AI, RPA and Big Data in strategic accounting management and consulting: perspectives and challenges
Integración de IA, RPA y Big Data en la gestión y consultoría estratégica contable: perspectivas y desafíos
DOI:
https://doi.org/10.15446/dyna.v92n238.118759Palabras clave:
efficiency, automation, predictive analytics, risk management, decision making and technology integration (en)eficiencia, automatización, análisis predictivo, gestión de riesgos, toma de decisiones e integración tecnológica (es)
Descargas
The integration of advanced technologies such as Artificial Intelligence (AI), Robotic Process Automation (RPA) and Big Data is revolutionizing strategic accounting management and consulting. AI optimizes repetitive tasks, improves accuracy in financial data processing and facilitates fraud detection. RPA automates audits, reconciliations and reporting, reducing errors and increasing operational efficiency. Big Data, on the other hand, improves the analysis of financial trends and risk management, enabling more strategic decisions.
However, the implementation of these technologies faces significant challenges: resistance to organizational change, digital skills gaps, the need for a robust technological infrastructure and regulatory compliance in data security. This study employs a mixed methodology, combining a systematic literature review, case studies in accounting firms in Colombia and Brazil (PwC, Datactil) and interviews with accounting and technology experts. The findings indicate that while the adoption of AI, RPA and Big Data improves efficiency and client confidence, their success depends on continuous training, change management strategies and sound regulatory frameworks. It is concluded that these technologies are redefining modern accounting, promoting more informed decisions and increasing the competitiveness of the financial sector.
La integración de tecnologías avanzadas como la Inteligencia Artificial (IA), la Automatización Robótica de Procesos (RPA) y Big Data está revolucionando la gestión y consultoría contable estratégica. La IA optimiza tareas repetitivas, mejora la precisión en el procesamiento de datos financieros y facilita la detección de fraudes. La RPA automatiza auditorías, conciliaciones y generación de informes, reduciendo errores y aumentando la eficiencia operativa. Big Data, por su parte, mejora el análisis de tendencias financieras y la gestión de riesgos, permitiendo decisiones más estratégicas. No obstante, la implementación de estas tecnologías enfrenta desafíos significativos: resistencia al cambio organizacional, brechas en competencias digitales, necesidad de una infraestructura tecnológica robusta y cumplimiento normativo en seguridad de datos. Este estudio emplea una metodología mixta, combinando revisión sistemática de literatura, estudios de caso en firmas contables de Colombia y Brasil (PwC, Datactil) y entrevistas con expertos en contabilidad y tecnología. Los hallazgos indican que, si bien la adopción de IA, RPA y Big Data mejora la eficiencia y confianza del cliente, su éxito depende de capacitación continua, estrategias de gestión del cambio y marcos regulatorios sólidos. Se concluye que estas tecnologías están redefiniendo la contabilidad moderna, promoviendo decisiones más informadas y aumentando la competitividad del sector financiero.
Referencias
[1] Othman, A., Artificial Intelligence in accounting: transforming financial management and decision-making 2025. DOI: https://doi.org/10.13140/RG.2.2.25950.34882
[2] Yi, Z., Cao, X., Chen, Z., and Li, S., Artificial intelligence in accounting and finance: challenges and opportunities. IEEE Access, 11, pp 129100-129123, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3333389
[3] Kokina, J., and Blanchette, S., Early evidence of digital labor in accounting: Innovation with robotic process automation. International Journal of Accounting Information Systems, 35, art. 100431, 2019. DOI: https://doi.org/10.1016/j.accinf.2019.100431
[4] Bhardwaj, A., RPA in Accounting. 2021. DOI: https://doi.org/10.1515/9783110676693-013
[5] Olagoke, M.F., The role of predictive analytics in enhancing financial decision‑making and risk management. Journal of Financial Risk Management, 14, pp. 47–65, 2025. DOI: https://doi.org/10.4236/jfrm.2025.141004.
[6] Aro, O.E., Predictive analytics in financial management: enhancing decision-making and risk management. 2024. DOI: https://doi.org/10.55248/gengpi.5.1024.2819
[7] Chowdhury, R.H., Al Masum, A., Farazi, M.Z.R., and Jahan, I., The impact of predictive analytics on financial risk management in businesses. World Journal of Advanced Research and Reviews (WJARR), 23(3), pp. 1378-1386, 2024. DOI: https://doi.org/10.30574/wjarr.2024.23.3.2807
[8] Kaur, R., Gabrijelčič, D., and Klobučar, T., Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97, art. 101804, 2023. DOI: https://doi.org/10.1016/j.inffus.2023.101804
[9] Korol, S., and Romashko, O., Artificial Intelligence in Accounting. Scientia Fructuosa, 154(2), pp. 145–157, 2024. DOI: https://doi.org/10.31617/1.2024(154)08
[10] Schweitzer, B., Artificial intelligence (AI) ethics in accounting. Journal of Accounting, Ethics and Public Policy, JAEPP, 25(1), pp. 67-67, 2024. DOI: https://doi.org/10.60154/jaepp.2024.v25n1p67
[11] Lehner, O.M., Ittonen, K., Silvola, H., Ström, E., and Wührleitner, A., Artificial intelligence–based decision‑making in accounting and auditing: ethical challenges and normative thinking. Accounting, Auditing & Accountability Journal, 35(9), pp. 109–135, 2022 DOI: https://doi.org/10.1108/AAAJ-09-2020-4934
[12] Schweitzer, B., Artificial intelligence (AI) ethics in accounting. Journal of Accounting, Ethics and Public Policy, JAEPP, 25(1), pp. 67-67, 2024. DOI: https://doi.org/10.60154/jaepp.2024.v25n1p67
[13] Song, M., The role of big data in financial risk assessment. Journal of the Association for Information Science and Technology. 2023.
[14] Olagoke, M.F., The role of predictive analytics in enhancing financial decision‑making and risk management. Journal of Financial Risk Management, 14, pp. 47–65. 2025. DOI: https://doi.org/10.4236/jfrm.2025.141004
[15] Fosso-Wamba, S., Queiroz, M.M., Guthrie, C., and Braganza, A., Industry experiences of artificial intelligence (AI): benefits and challenges in operations and supply chain management. Production planning and control, 33(16), pp. 1493-1497, 2022. DOI: https://doi.org/10.1080/09537287.2021.1882695
[16] Assidi, S., Omran, M., Rana, T., and Borgi, H., The role of AI adoption in transforming the accounting profession: a diffusion of innovations theory approach. Journal of Accounting and Organizational Change, art. 0124, 2025. DOI: https://doi.org/10.1108/JAOC-04-2024-0124
[17] Mwachikoka, C.F., Effects of artificial intelligence on financial reporting accuracy. World Journal of Advanced Research and Reviews, 23(3), pp. 1751–1767. 2024. DOI: https://doi.org/10.30574/wjarr.2024.23.3.2791
[18] Hasan, A., Artificial intelligence (AI) in accounting and auditing: a literature review. Open Journal of Business and Management, 10, pp. 440–465, 2022, DOI: https://doi.org/10.4236/ojbm.2022.101026
[19] Theodorakopoulos, L., Thanasas, G., and Halkiopoulos, C., Implications of big data in accounting: challenges and opportunities. Emerging. Science Journal, 8(3), pp 1201–1214, 2024. DOI: https://doi.org/10.28991/ESJ-2024-08-03-024
[20] Olaiya, O.P., Cynthia, A.C., Usoro, S.O., Obani, O.Q., Nwafor, K.C., and Ajayi, O.O., The impact of big data analytics on financial risk management. International Journal of Science and Research Archive, 12(2), pp. 821-827, 2024. DOI: https://doi.org/10.30574/ijsra.2024.12.2.1313
[21] Kureljusić, M., and Karger, E., Forecasting in financial accounting with artificial intelligence. A systematic literature review and future research agenda. Journal of Applied Accounting Research, 25(1), pp. 81–104, 2023. DOI: https://doi.org/10.1108/JAAR-06-2022-0146
[22] Ayinla, B.S., Atadoga, A., Ike, C.U., Ndubuisi, L.N., Asuzu, O.F., and Adeleye, R.A., The role of robotic process automation (RPA) in modern accounting: Investigating how automation tools are transforming traditional accounting practices. Engineering Science & Technology Journal, 5(2), pp. 427–447, 2024. DOI: https://doi.org/10.51594/estj.v5i2.804
[23] Rama-Maneiro, E., Vidal, J.C., and Lama, M., Deep learning for predictive business process monitoring: review and benchmark. IEEE Transactions on Services Computing, 16(1), pp. 739-756, 2021. DOI: https://doi.org/10.1109/TSC.2021.3139807
[24] Khalifa, R., and Htay, S.N., Big data analytics and financial reporting quality: qualitative evidence from Canada. Journal of Financial Reporting and Accounting, 19(3), pp. 344–362, 2021. DOI: https://doi.org/10.1108/JFRA-12-2021-0489
[25] Harrast, S.A., and Liu, Y., Robotic Process Automation (RPA) in auditing: a commentary. 2023. DOI: https://doi.org/10.53106/256299802022120401003
[26] Botkers, J., Integrating RPA with existing systems: a case study. Automation Today, 14(3), pp. 122-135, 2023. DOI: 10.1016/j.autotoday.2023.08.004
[27] Teece, D.J., Pisano, G., and Shuen, A., Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), pp. 509–533, 1997. DOI: https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ936>3.0.CO;2-Z
[28] Huerta, D., and Jensen, R., Auditing and Big Data. 2017. DOI: 10.32479/ijefi.8556
[29] Adelakun, B.O., The impact of AI on internal auditing: transforming practices and ensuring compliance. Finance and Accounting Research Journal, 4(6), pp. 350–370, 2022. DOI: https://doi.org/10.51594/farj.v4i6.1316
[30] Krahel, J.P., and Vasarhelyi, M.A., Continuous auditing: theory and Application. Journal of Information Systems, 29(2), pp. 5–21, 2015. DOI: https://doi.org/10.2308/isys-10456
[31] Parker, C.A., Issa, H., Rozario, A., and Søgaard, J.S., Robotic Process Automation (RPA) implementation case studies in accounting: a beginning-to-end perspective. Accounting Horizons. Advance online publication, art. 8330, 2022. DOI: https://doi.org/10.2139/ssrn.4008330
[32] Johansson, K., Digital transformation in accounting. 2022. DOI: https://doi.org/10.30574/wjarr.2024.23.3.2807
[33] Almeida, F., et., al., Systematic review on AI and RPA integration. 2024. DOI: https://doi.org/10.56578/jisc020304
[34] Bou-Reslan, F., and Jabbour.Al Maalouf, N., Assessing the transformative impact of AI adoption on efficiency, fraud detection, and skill dynamics in accounting practices. Journal of Risk and Financial Management, 17(12), art. 577, 2024. DOI: https://doi.org/10.3390/jrfm17120577
[35] Antwi, B.O., Adelakun, B.O., and Eziefule, A.O., Transforming financial reporting with AI: enhancing accuracy and timeliness. International Journal of Advanced Economics, 6(6), pp. 205–223, 2024. DOI: https://doi.org/10.51594/ijae.v6i6.1229
[36] Al-Qudah, A.A., Artificial Intelligence for sustainable finance and sustainable technology, 2022. DOI: https://doi.org/10.33394/jk.v8i4.6137
[37] Napier, H., Digital transformation in accounting education, 2021. DOI: https://doi.org/10.15680/IJIRSET.2025.1401014
[38] Khashman, A., Credit risk evaluation using neural Networks: Emotional vs. Conventional models. Applied Soft Computing, 11(8), pp. 5477–5486, 2011. DOI: https://doi.org/10.1016/j.asoc.2011.05.011
[39] Huang, A.H., and You, H., Artificial Intelligence in financial decision making. SSRN, 2022. DOI: https://doi.org/10.2139/ssrn.4235511
[40] Huerta, C., Big Data in public accounting: opportunities and challenges. Accounting Perspectives, 18(3), pp. 72-85, 2017. DOI: https://doi.org/10.1016/j.accper.2017.08.002
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




