Publicado
Enhancing urban E-commerce efficiency: a fleet composition benchmark
Mejorando la eficiencia del comercio electrónico urbano: una referencia para la composición de flotas
DOI:
https://doi.org/10.15446/dyna.v92n238.119019Palabras clave:
last-mile, heterogeneous fleet composition, E-commerce, low-emission vehicles, Monte Carlo simulation (en)última milla, composición heterogénea de flota, comercio electrónico, vehículos de bajas emisiones, simulación Monte Carlo (es)
Descargas
In Colombia’s competitive e-commerce market, accurately estimating last-mile delivery fleets is essential for reducing operational costs. The absence of comprehensive models with operational constraints leads to inefficient resource use and limits sustainable practices. This study proposes a heterogeneous fleet composition model to reduce costs and integrate electric and low-consumption vehicles. The methodology includes a literature review, operational characterization of the target company, and an optimization model for a tactical planning period. A Monte Carlo simulation evaluates demand uncertainty through various scenarios. Results indicate a 9.92% cost reduction and over 200% increase in electric vehicle usage within the fleet, supporting environmental goals. The proposed model offers a decision-making benchmark for Colombian e-commerce companies, enhancing competitiveness and contributing to reduced urban pollution.
En el competitivo mercado colombiano de comercio electrónico, estimar con precisión las flotas para la logística de última milla es clave para reducir los costos operativos. La falta de modelos integrales con restricciones operativas genera un uso ineficiente de recursos y limita prácticas sostenibles. Este estudio propone un modelo de composición de flota heterogénea orientado a disminuir costos e incorporar vehículos eléctricos y de bajo consumo. La metodología incluye una revisión bibliográfica, la caracterización operativa de la empresa objetivo y la formulación de un modelo de optimización para un periodo táctico de planificación. Mediante simulación Monte Carlo se evalúa la incertidumbre de la demanda en distintos escenarios. Los resultados muestran una reducción del 9,92 % en los costos y un aumento superior al 200 % en el uso de vehículos eléctricos, posicionando el modelo como una referencia para la toma de decisiones en empresas de comercio electrónico en Colombia, con beneficios económicos y ambientales.
Referencias
[1] McKinsey and Company. E-commerce in Latin America: Building trust, [online], 2023 Available at: https://www.mckinsey.com/industries/retail/our-insights/e-commerce-in-latin-america-building-trust.
[2] Oxford Business Group. How Covid-19 triggered a Latin American e-commerce boom. [online], 2021 Available at: https://oxfordbusinessgroup.com/news/how-covid-19-triggered-latin-american-e-commerce-boom.
[3] Think with Google. The future of e-commerce in Latin America. [online], 2021 Available at: https://www.thinkwithgoogle.com/intl/en-154/consumer-insights/consumer-trends/future-e-commerce-latin-america.
[4] Jabali, O., Gendreau, M., and Laporte, G.A., Continuous approximation model for the fleet composition problem. Transportation Research Part B: Methodological, 46(10), pp. 1591–1606, 2012. DOI: https://doi.org/10.1016/j.trb.2012.06.004
[5] Janjevic, M., and Winkenbach, M., Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets. Transportation Research Part A: Policy and Practice, 133, pp. 164–196, 2020. DOI: https://doi.org/10.1016/j.tra.2020.01.003
[6] Janjevic, M., Winkenbach, M., and Merchán, D., Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks. Transportation Research Part E: Logistics and Transportation Review, 131, pp. 37–67, 2019. DOI: https://doi.org/10.1016/j.tre.2019.09.001
[7] Peppel, M., Ringbeck, J., and Spinler, S., How will last-mile delivery be shaped in 2040? A Delphi-based scenario study. Technological Forecasting and Social Change, 177, art. 121493, 2021. DOI: https://doi.org/10.1016/j.techfore.2022.121493
[8] Errico, F., Crainic, T.G., Malucelli, F., and Nonato, M.A., survey on planning semi-flexible transit systems: Methodological issues and a unifying framework. Transportation Research Part C: Emerging Technologies, 36, pp. 324–338, 2013. DOI: https://doi.org/10.1016/j.trc.2013.08.010
[9] Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A., New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research, 257(3), pp. 845–858, 2017. DOI: https://doi.org/10.1016/j.ejor.2016.08.012
[10] Adulyasak, Y., Cordeau, J.F., and Jans, R., The production routing problem: a review of formulations and solution algorithms. Computers and Operations Research, 55, pp. 141–152, 2015. DOI: https://doi.org/10.1016/j.cor.2014.01.011
[11] Li, Y., Chu, F., and Feng, C., Integrated production inventory routing planning for intelligent food logistics systems. IEEE Transactions on Intelligent Transportation Systems, 20(3), pp. 867–878, 2019. DOI: https://doi.org/10.1109/TITS.2018.2839900
[12] Simoni, M.D., Bujanovic, P., Boyles, S.D., and Kutanoglu, E., Urban consolidation solutions for parcel delivery considering location, fleet and route choice. Case Studies on Transport Policy, 6(1), pp. 112–124, 2018. DOI: https://doi.org/10.1016/j.cstp.2017.11.002
[13] Bjørgen, A., Bjerkan, K.Y., and Hjelkrem, O.A., E-groceries: sustainable last mile distribution in city planning. Research in Transportation Economics, 87, art. 100805, 2021. DOI: https://doi.org/10.1016/j.retrec.2019.100805
[14] Hoff, A., Andersson, H., Christiansen, M., Hasle, G., and Løkketangen, A., Industrial aspects and literature survey: fleet composition and routing. Computers and Operations Research, 37(12), pp. 2041–2061, 2010. DOI: https://doi.org/10.1016/j.cor.2010.03.015
[15] Islam, M.A., and Gajpal, Y., Optimization of conventional and green vehicles composition under carbon emission cap. Sustainability (Switzerland), 13(12), art. 6940, 2021. DOI: https://doi.org/10.3390/su13126940
[16] Al-dal’ain, R., and Celebi, D., Planning a mixed fleet of electric and conventional vehicles for urban freight with routing and replacement considerations. Sustainable Cities and Society, 73, art. 103105, 2021. DOI: https://doi.org/10.1016/j.scs.2021.103105
[17] Mardaneh, E., Lin, Q., and Loxton, R.A., Heuristic algorithm for optimal fleet composition with vehicle routing considerations. Optimization Methods and Software, 31(2), pp. 272–289, 2016. DOI: https://doi.org/10.1080/10556788.2015.1062890
[18] Pinto, R., and Lagorio, A., Supporting the decision-making process in the urban freight fleet composition problem. International Journal of Production Research, art. 1753896, 2021. DOI: https://doi.org/10.1080/00207543.2020.1753896
[19] List, G.F., Wood, B., Nozick, L.K., Turnquist, M.A., Jones, D.A., Kjeldgaard, E.A., and Lawton, C.R., Robust optimization for fleet planning under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 39(3), pp. 209–227, 2003. DOI: https://doi.org/10.1016/S1366-5545(02)00026-1
[20] Serrano-Hernandez, A., Cadarso, L., and Faulin, J.A., Strategic multistage tactical two-stage stochastic optimization model for the Airline Fleet Management Problem. Transportation Research Procedia, 47, pp. 473–480, 2020. DOI: https://doi.org/10.1016/j.trpro.2020.03.152
[21] Loxton, R., Lin, Q., and Teo, K.L., A stochastic fleet composition problem. Computers and Operations Research, 39(12), pp. 3177–3184, 2012. DOI: https://doi.org/10.1016/j.cor.2012.04.004
[22] Lee, Y.H., Kim, J.I., Kang, K.H., and Kim, K.H., A heuristic for vehicle fleet mix problem using tabu search and set partitioning. Journal of the Operational Research Society, 59(6), pp. 833–841, 2008. DOI: https://doi.org/10.1057/palgrave.jors.2602421
[23] Stavropoulou, F., The consistent vehicle routing problem with heterogeneous fleet. Computers and Operations Research, 140, art. 105644, 2021. DOI: https://doi.org/10.1016/j.cor.2021.105644
[24] Repoussis, P.P., and Tarantilis, C.D., Solving the fleet size and mix vehicle routing problem with time windows via adaptive memory programming. Transportation Research Part C: emerging Technologies, 18(5), pp. 695–712, 2010. DOI: https://doi.org/10.1016/j.trc.2009.08.004
[25] Keskin, M., and Çatay, B., Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C: Emerging Technologies, 65, pp. 111–127, 2016. DOI: https://doi.org/10.1016/j.trc.2016.01.013
[26] Goeke, D., and Schneider, M., Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), pp. 81–99, 2015. DOI: https://doi.org/10.1016/j.ejor.2015.01.049
[27] Jun, S., and Lee, S., Evolutionary neural network for learning of scalable heuristics for pickup and delivery problems with time windows. Computers and Industrial Engineering, 169, art. 108282, 2021. DOI: https://doi.org/10.1016/j.cie.2022.108282
[28] Oudouar, F., Lazaar, M., and El Miloud, Z., A novel approach based on heuristics and a neural network to solve a capacitated location routing problem. Simulation Modelling Practice and Theory, 100, art. 102064, 2019. DOI: https://doi.org/10.1016/j.simpat.2019.102064
[29] Malladi, S.S., Christensen, J.M., Ramírez, D., Larsen, A., and Pacino, D., Stochastic fleet mix optimization: Evaluating electromobility in urban logistics. Transportation Research Part E: Logistics and Transportation Review, 158, art. 102554, 2020. DOI: https://doi.org/10.1016/j.tre.2021.102554
[30] Martínez-Bernal, J., Cuervo-Cruz, R.A., y Orjuela-Castro, J.A., Modelos logísticos estocásticos: una revisión de la literatura. Aibi Revista de Investigación, Administración e Ingeniería, 8(S1), pp. 269–285, 2021. DOI: https://doi.org/10.15649/2346030x.2470
[31] Shapiro, A., and Philpott, A., A tutorial on stochastic programming. Manuscript, pp. 1–35, 2007. Available at: http://stoprog.org/stoprog/SPTutorial/TutorialSP.pdf, 2007.
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




