Radiator in the test bench

Publicado

2025-10-17

Experimental analysis and computational simulation of heat transfer in a radiator

Análisis experimental y simulación computacional de la transferencia de calor en un radiador

DOI:

https://doi.org/10.15446/dyna.v92n239.119111

Palabras clave:

Radiator, Heat transfer, CFD (Computational Fluid Dynamics, Thermal efficiency, Thermal design (en)
Radiador, Transferencia de calor, CFD (Dinámica de Fluidos Computacional), Eficiencia térmica, Diseño térmico (es)

Descargas

Autores/as

This study analyzes the thermal performance of a 4.1 dm³ engine radiator through experimental tests and CFD simulations using ANSYS Fluent. The effects of materials, tube geometry, and flow conditions on heat transfer and thermal efficiency were evaluated. The results show that copper tubes enhance heat transfer by 18% but increase pressure drop by 4.44%. Additionally, increasing air velocity improves thermal efficiency by 3.74%, suggesting that specific improvements in fin design could enhance performance without increasing energy consumption. The study validates the use of CFD as a reliable tool for analyzing cooling systems in engines, benefiting the automotive industry with more efficient radiators. These improvements can be extended to hybrid and electric vehicles, as well as industrial heat exchangers, contributing to more sustainable thermal management. The main scientific contributions of this work are: (i) the experimental validation of a CFD model applied to an automotive radiator under transitional flow regime, (ii) the quantitative evaluation of the effects of copper tubes on thermal efficiency and pressure drop, and (iii) the detailed analysis of air velocity impact on heat transfer and its implications for radiator thermal design.

Este estudio analiza el rendimiento térmico de un radiador de motor de 4.1 dm³ mediante pruebas experimentales y simulaciones CFD en ANSYS Fluent. Se evaluaron los efectos de materiales, geometría de tubos y condiciones de flujo en la transferencia de calor y eficiencia térmica. Los resultados muestran que los tubos de cobre mejoran la transferencia de calor en un 18%, pero aumentan la caída de presión en un 4.44%. Además, incrementar la velocidad del aire mejora la eficiencia térmica en un 3.74%, lo que sugiere que ciertas mejoras en el diseño de las aletas podrían aumentar el desempeño sin afectar el consumo energético. El estudio valida el uso de CFD como herramienta confiable para el análisis de sistemas de enfriamiento en motores, beneficiando a la industria automotriz con radiadores más eficientes. Estas mejoras pueden extenderse a vehículos híbridos y eléctricos, así como a intercambiadores de calor industriales, contribuyendo a una gestión térmica más sostenible. Las principales contribuciones científicas de este trabajo son: (i) la validación experimental de un modelo CFD aplicado a un radiador automotriz en régimen de flujo transitorio, (ii) la evaluación cuantitativa del efecto de los tubos de cobre sobre la eficiencia térmica y la caída de presión, y (iii) el análisis detallado del impacto de la velocidad del aire en la transferencia de calor y sus implicaciones en el diseño térmico del radiador.

Referencias

[1] Achaichia, A., and Cowell, T.A., Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces. Experimental Thermal and Fluid Science, 1(2), pp. 147–157, 1988. DOI: https://doi.org/10.1016/0894-1777(88)90032-5

[2] Park, K.W., and Pak, H.Y., Flow and heat transfer characteristics in flat tubes of a radiator. Numerical Heat Transfer, Part A: Applications, 41(1), pp. 19–40, 2002. DOI: https://doi.org/10.1080/104077802317221429

[3] Patel, H.V., Subhedar, D.G., and Ramani, B., Numerical investigation of performance for car radiator oval tube. Materials Today: Proceedings, 4(9), pp. 9384–9389. 2017. DOI: https://doi.org/10.1016/j.matpr.2017.06.190

[4] Vajjha, R.S., Das, D.K., and Ray, D.R., Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. International Journal of Heat and Mass Transfer, 80, pp. 353–367, 2015. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.018

[5] Dittus, F.W., and Boelter, L.M.K., Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 12(1), pp. 3–22. 1985. DOI: https://doi.org/10.1016/0735-1933(85)90003-X

[6] Razzaghi, P., Ghassabian, M., Daemiashkezari, M., Abdulfattah, A., Hassanzadeh, H., and Ahmad, H., Thermo-hydraulic performance evaluation of turbulent flow and heat transfer in a twisted flat tube: A CFD approach. Case Studies in Thermal Engineering, art. 102107, 2022. DOI: https://doi.org/10.1016/j.csite.2022.102107

[7] Dong, J., Chen, J., Zhang, W., and Hu, J., Experimental and numerical investigation of thermal-hydraulic performance in wavy fin-and-flat tube heat exchangers. Applied Thermal Engineering, 30(11–12), pp. 1377–1386, 2010. DOI: https://doi.org/10.1016/j.applthermaleng.2010.02.027

[8] Kayastha, K.S., CFD simulation of heat transfer analysis of automobile radiator using helical tubes. International Journal of Engineering Research and Development, 11(1), pp. 24–35, 2015. DOI: https://doi.org/10.15680/IJIRSET.2019.0805138

[9] Wan, L., and Pu, Z., Experimental study on the temperature uniformity of radiator based on micro heat pipe array in plateau area. IOP Conference Series: Earth and Environmental Science, 450(1), art. 012033, 2020. DOI: https://doi.org/10.1088/1755-1315/450/1/012033

[10] Selvam, C., Solaimalai-Raja, R., Mohan Lal, D., and Harish, S., Overall heat transfer coefficient improvement of an automobile radiator with graphene-based suspensions. International Journal of Heat and Mass Transfer, 115, pp. 580–588, 2017. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.071

[11] Pathak, K.K., Giri, A., and Das, B., Thermal performance of heat sinks with variable and constant heights: an extended study. International Journal of Heat and Mass Transfer, 146, art. 118916, 2020. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118916

[12] Paramane, S.B., Van Der Veken, W., and Sharma, A., A coupled internal-external flow and conjugate heat transfer simulations and experiments on radiators of a transformer. Applied Thermal Engineering, 103, pp. 961–970, 2016. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.164

[13] Oliet, C., Oliva, A., Castro, J., and Pérez-Segarra, C.D., Parametric studies on automotive radiators. Applied Thermal Engineering, 27(11–12), pp. 2033–2043, 2007. DOI: https://doi.org/10.1016/j.applthermaleng.2006.12.006

[14] Krásný, I., Astrouski, I., and Raudenský, M., Polymeric hollow fiber heat exchanger as an automotive radiator. Applied Thermal Engineering, 108, pp. 798–803, 2016. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.181

[15] Garelli, L., Ríos-Rodriguez, G., Dorella, J.J., and Storti, M.A., Heat transfer enhancement in panel type radiators using delta-wing vortex generators. International Journal of Thermal Sciences, 137, pp. 64–74, 2019. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.10.037

[16] Ferraris, W., et al., Single layer cooling module for A-B segment vehicles. SAE Technical Paper, art. 1692, 2015. DOI: https://doi.org/10.4271/2015-01-1692

[17] Zuñiga-Cerroblanco, J.L., Collazo-Barrientos, J., Hernandez-Guerrero, A. and Hortelano-Capetillo, J., Thermal and hydraulic analysis of different tube geometries to improve the performance of an automotive radiator. Revista Ingeniería Industrial, 11(4), pp. 13–23, 2020. DOI: https://doi.org/10.35429/JIE.2020.11.4.13.23

[18] Chen, X., Wang, L., and Li, Y., Numerical investigation of thermal performance in compact plate-fin radiators. Applied Thermal Engineering, 206, art. 119435. 2022. DOI: https://doi.org/10.1016/j.applthermaleng.2022.119435

[19] Kumar, A., Singh, R., and Raj, R., CFD analysis of multi-pass radiator using SST k-ω turbulence model. Thermal Science and Engineering Progress, 24, art. 101027. 2021. DOI: https://doi.org/10.1016/j.tsep.2021.101027

[20] Zhang, H., Liu, J., and Ma, Y., Experimental and numerical investigation of crossflow radiator performance under varying air velocities. International Journal of Heat and Mass Transfer, 153, art. 120944. 2020. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120944

Cómo citar

IEEE

[1]
J. M. Trenado-Herrera, C. Mendoza-Covarrubias, A. Aguilar-Corona, y H. C. Gutiérrez-Sánchez, «Experimental analysis and computational simulation of heat transfer in a radiator», DYNA, vol. 92, n.º 239, pp. 27–37, oct. 2025.

ACM

[1]
Trenado-Herrera, J.M., Mendoza-Covarrubias, C., Aguilar-Corona, A. y Gutiérrez-Sánchez, H.C. 2025. Experimental analysis and computational simulation of heat transfer in a radiator. DYNA. 92, 239 (oct. 2025), 27–37. DOI:https://doi.org/10.15446/dyna.v92n239.119111.

ACS

(1)
Trenado-Herrera, J. M.; Mendoza-Covarrubias, C.; Aguilar-Corona, A.; Gutiérrez-Sánchez, H. C. Experimental analysis and computational simulation of heat transfer in a radiator. DYNA 2025, 92, 27-37.

APA

Trenado-Herrera, J. M., Mendoza-Covarrubias, C., Aguilar-Corona, A. & Gutiérrez-Sánchez, H. C. (2025). Experimental analysis and computational simulation of heat transfer in a radiator. DYNA, 92(239), 27–37. https://doi.org/10.15446/dyna.v92n239.119111

ABNT

TRENADO-HERRERA, J. M.; MENDOZA-COVARRUBIAS, C.; AGUILAR-CORONA, A.; GUTIÉRREZ-SÁNCHEZ, H. C. Experimental analysis and computational simulation of heat transfer in a radiator. DYNA, [S. l.], v. 92, n. 239, p. 27–37, 2025. DOI: 10.15446/dyna.v92n239.119111. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/119111. Acesso em: 28 dic. 2025.

Chicago

Trenado-Herrera, Juan Mauricio, Crisanto Mendoza-Covarrubias, Alicia Aguilar-Corona, y Hugo Cuauhtémoc Gutiérrez-Sánchez. 2025. «Experimental analysis and computational simulation of heat transfer in a radiator». DYNA 92 (239):27-37. https://doi.org/10.15446/dyna.v92n239.119111.

Harvard

Trenado-Herrera, J. M., Mendoza-Covarrubias, C., Aguilar-Corona, A. y Gutiérrez-Sánchez, H. C. (2025) «Experimental analysis and computational simulation of heat transfer in a radiator», DYNA, 92(239), pp. 27–37. doi: 10.15446/dyna.v92n239.119111.

MLA

Trenado-Herrera, J. M., C. Mendoza-Covarrubias, A. Aguilar-Corona, y H. C. Gutiérrez-Sánchez. «Experimental analysis and computational simulation of heat transfer in a radiator». DYNA, vol. 92, n.º 239, octubre de 2025, pp. 27-37, doi:10.15446/dyna.v92n239.119111.

Turabian

Trenado-Herrera, Juan Mauricio, Crisanto Mendoza-Covarrubias, Alicia Aguilar-Corona, y Hugo Cuauhtémoc Gutiérrez-Sánchez. «Experimental analysis and computational simulation of heat transfer in a radiator». DYNA 92, no. 239 (octubre 17, 2025): 27–37. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/119111.

Vancouver

1.
Trenado-Herrera JM, Mendoza-Covarrubias C, Aguilar-Corona A, Gutiérrez-Sánchez HC. Experimental analysis and computational simulation of heat transfer in a radiator. DYNA [Internet]. 17 de octubre de 2025 [citado 28 de diciembre de 2025];92(239):27-3. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/119111

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

149

Descargas

Los datos de descargas todavía no están disponibles.