Images of the samples: a) reference asphalt pavement and b) TiO₂-modified asphalt pavement, at month 1; c) reference asphalt pavement and d) TiO2-modified asphalt pavement, after 12 months of outdoor exposure.

Publicado

2025-05-22

Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI)

Contribución de un pavimento asfáltico modificado con TiO2 a la moderación de la Isla de Calor Urbana (ICU)

DOI:

https://doi.org/10.15446/dyna.v92n237.119489

Palabras clave:

modified asphalt pavements, TiO2, urban heat island, albedo, aging, released energy (en)
pavimentos de asfalto modificados, TiO2, isla de calor urbana, albedo, envejecimiento, energía liberada (es)

Descargas

Autores/as

Urban pavements, covering up to 40% of cities, intensify the Urban Heat Island (UHI) phenomenon by impeding rainwater infiltration and absorbing solar radiation. High pavement temperatures increase urban energy demand and pollution. One important factor affecting pavement temperature is albedo. The higher the albedo, the less solar irradiation the pavement absorbs, and the cooler it remains. This study evaluates TiO2 incorporated into asphalt to enhance albedo. The thermal response of conventional and TiO2-modified pavements was monitored under natural sunlight. Opto-thermal properties were measured initially and after twelve months of outdoor exposure. An energy balance quantified the heat amount released to the environment for both pavements. Results demonstrate TiO2 effectiveness in reducing heat storage and improving radiative cooling over time. Additionally, the mechanical and rheological impacts of TiO2 on asphalt binders were analyzed. Cool pavements with TiO2 emerge as a viable UHI mitigation strategy, offering energy savings and enhanced urban sustainability.

Los pavimentos urbanos, que cubren hasta el 40% de las ciudades, intensifican el fenómeno de la Isla de Calor Urbana (ICU) al impedir la infiltración de agua de lluvia y absorber la radiación solar. Las altas temperaturas del pavimento aumentan la demanda energética urbana y la contaminación. Un factor importante que afecta la temperatura del pavimento es el albedo. Cuanto mayor es el albedo, menor es la radiación solar que absorbe el pavimento y más frío se mantiene. Este estudio evalúa el TiO2 incorporado al asfalto para mejorar el albedo. Se monitoreó la respuesta térmica de los pavimentos convencionales y modificados con TiO2 bajo la luz solar natural. Se midieron las propiedades opto-térmicas inicialmente y después de doce meses de exposición al aire libre. Un balance energético cuantificó la cantidad de calor liberado al ambiente para ambos pavimentos. Los resultados demuestran la eficacia del TiO2 para reducir el almacenamiento de calor y mejorar el enfriamiento radiativo con el tiempo. Además, se analizaron los impactos mecánicos y reológicos del TiO2 en los ligantes asfálticos. Los pavimentos fríos con TiO2 surgen como una estrategia viable de mitigación de UHI, que ofrece ahorros de energía y una mayor sostenibilidad urbana.

Referencias

[1] Akbari, H., Cartalis, C., Kolokotsa, D., Muscio, A., Pisello, A.L., Rossi, F., Santamouris, M., Synnefa, A., Wong, N.H., and Zinzi, M., Local climate change and urban heat island mitigation techniques – The state of the art. Journal of Civil Engineering and Management, 22 (1), pp. 1–16, 2016. DOI: https://doi.org/10.3846/13923730.2015.1111934

[2] Beltran-Hernandez, R.I., Martinez-Ortiz, J.A., Lucho-Constantino, C.A., Lazarraga-Mendiola, L.G., and Bigurra-Alzati, C.A., Alternatives to counteract the effects of anthropogenic soil sealing. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, [online]. 8(15), art. 115020, 2020. Available at: https://portal.amelica.org/ameli/journal/595/5953115020/ DOI: https://doi.org/10.29057/icbi.v8i15.5241

[3] Santamouris, M., Using cool pavements as a mitigation strategy to fight urban heat island. A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, pp. 224-240, 2013. DOI: https://doi.org/10.1016/j.rser.2013.05.047

[4] Alchapar, M.L., Correa, E.N., and Cantón, A., Solar reflectance index of pedestrian pavements and their response to aging. Journal of Clean Energy Technologies, 1(4), pp. 281-285, 2013. DOI: https://doi.org/10.7763/JOCET.2013.V1.64

[5] Wang, Z., Xie, Y., Mu, M., Feng, L., Xie, N., and Cui, N., Materials to mitigate the urban heat island effect for cool pavement: a brief review. Buildings, 12(8), art. 1221, 2022. DOI: https://doi.org/10.3390/buildings12081221

[6] Nwakaire, C., Onn, C.C., Poh, Y.S., Yuen, C.W., and Onodagu, P.D., Urban heat island studies with emphasis on urban pavements: a review. Sustainable Cities and Society 63, art. 102476, 2020. DOI: https://doi.org/10.1016/j.scs.2020.102476

[7] Zhu, S., and Mai, X., A review of using reflective pavement materials as mitigation tactics to counter the effects of urban heat island. Advanced Composites and Hybrid Materials, [online]. 2(3), pp. 381–388, 2019. Available at: https://link.springer.com/article/10.1007/s42114-019-00104-9

[8] Sophia, K., Souliotis, M., Papaefthimiou, S., Panaras, G., Paravantis, J., Michalena, E., Hills, J., Vouros, A.P., Dymenou, K., and Mihalakakou, G., Cool pavements: state of the art and new technologies. Sustainability, 14(9), art. 5159, 2022. DOI: https://doi.org/10.3390/su14095159

[9] Gong, Z., Zhang, L., Wu, J., Xiu, Z., Wang, L., and Miao, Y., Review of regulation techniques of asphalt pavement high temperature for climate change adaptation. Journal of Infrastructure Preservation and Resilience, 3, art. 9, 2022. DOI: https://doi.org/10.1186/s43065-022-00054-5

[10] Fernandez-Gomez, W.D., Rondón-Quintana, H.A., and Reyez Lizcano, F., A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33(1), pp. 5-12, 2013. DOI: https://doi.org/10.15446/ing.investig.v33n1.37659

[11] Xie, N., Li, H., Zhang, H., Zhang, X., and Jia, M., Effects of accelerated weathering on the optical characteristics of reflective coatings for cool pavement. Solar Energy Materials and Solar Cells, 215, art. 110698, 2020. DOI: https://doi.org/10.1016/j.solmat.2020.110698

[12] Hossain, K., Sertac, A., and Das, P., Effect of ultraviolet aging on rheological properties of asphalt cement. Proceedings of Canadian Technical Asphalt Association (CTAA), 2018.

[13] Lu, X., Talon, Y., and Redelius, P., Aging of bituminous binders – laboratory tests and field data. Proceedings of E&E Congress, 2008.

[14] Badin, G., Ahmad, N., Ali, H.M., Ahmad, T., and Jameel, M.S., Effect of addition of pigments on thermal characteristics and the resulting performance enhancement of asphalt. Construction and Building Materials, 302, art. 124212, 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124212

[15] Ayar, P., Ruhi, A., Baibordy, A., Azadgoleh, M.A., Mohammadi, M.M., and Abdipour, S., Toward sustainable roads: a critical review on nano‑TiO2 application in asphalt pavement. Innovative Infrastructure Solutions, 9, art. 148, 2024. DOI: https://doi.org/10.1007/s41062-024-01450-4

[16] Chen, J., Zhou, Z., Wu, J., Hou, S., and Liu, M., Field and laboratory measurement of albedo and heat transfer for pavement materials. Construction and Building Materials, 202(4), pp. 46–57, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.028

[17] Zhong, Y., Research on thermal reflection and cooling curing coating material of nano modified emulsified asphalt for urban road pavement. E3S Web of Conferences 261, art. 02051, 2021. DOI: https://doi.org/10.1051/e3sconf/202126102051

[18] Akbari, H., Levinson, R., and Stern, S., Procedure for measuring the solar reflectance of flat or curved roofing assemblies. Solar Energy, 82(7), pp. 648-655, 2008. DOI: https://doi.org/10.1016/j.solener.2008.01.001

[19] ASTM (2006). ASTM E1933-99ª: American Society for Testing and Materials, Standard Test Methods for measuring and compensating for emissivity using infrared imaging radiometers. ASTM

[20] ASTM D5/D5M. Standard Test Method for Penetration of Bituminous Materials, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA., United States, 2020.

[21] ASTM D36/D36M. Standard Test Method for Softening Point of Bitumen (Ringand-Ball Apparatus), ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA., United States, 2020.

[22] AASHTO M320. Standard Specification for Performance-Grade Asphalt Binder.

[23] AASHTO T240. Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test).

[24] Dell’Antonio-Cadorin, N., Staub-de Melo, J.V., Borba-Broering, W., Manfro, A.L., and Salgado-Barra, B., Asphalt nanocomposite with titanium dioxide: Mechanical, rheological and photoactivity performance. Construction and Building Materials, 289, art. 123178, 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123178

[25] Villegas-Villegas, R.E., Baldi-Sevilla, A., Aguiar-Moya, J.P., and Loria-Salazar, L., Analysis of asphalt oxidation by means of accelerated testing and environmental conditions. Transportation Research Record, 2672(28), pp. 244-255, 2018. DOI: https://doi.org/10.1177/0361198118777630

[26] Ramadhansyah, P.J., Masri, K.A., Norhidayah, A.H., Hainin, M.R., Muhammad Naqiuddin, M.W., Haryati, Mohd, K.I., Juraidah, A., Nanoparticle in asphalt binder: a state-of-the-art review. IOP Conference Series Materials Science and Engineering, 712, art. 012023, 2020. DOI: https://doi.org/10.1088/1757-899X/712/1/012023

[27] Huang, M, and Wen, X., Experimental study on photocatalytic effect of Nano TiO2 epoxy emulsified asphalt mixture. Applied Sciences, 9(12), art. 2464, 2019. DOI: https://doi.org/10.3390/app9122464

[28] Pasetto, M., Baliello, A., Pasquini, E., and Giacomello, G., High albedo pavement materials. Eco-efficient Materials for Reducing Cooling Needs in Buildings and Construction, 2020. DOI: https://doi.org/10.1016/B978-0-12-820791-8.00002-X

[29] Li, H., Harvey, J., and Kendall, A., Field measurement of albedo for different land cover materials and effects on thermal performance. Building and Environment, 59, pp. 536–546, 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.10.014

[30] Bentz, D.P., A Computer model to predict the surface temperature and time-of-wetness of concrete pavements and bridge decks building and fire research laboratory. August 2020 National Institute of Standards and Technology Administration, U.S. Department of Commerce.

[31] Asaeda, T., Vu, C., and Wake, A., Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environment, 30(3), pp. 413-427, 1996. DOI: https://doi.org/10.1016/1352-2310(94)00140-5

[32] Qin, Y., Hiller, J.E., and Meng, D., Linearity between pavement thermophysical properties and surface temperatures. Journal of Materials in Civil Engineering, 31(11), art. 2890, 2019. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890

[33] Xu, L., Wang, J., Xiao, F., EI-Badawy, S., and Awed, A.M. Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 281, art. 116077, 2021. DOI: https://doi.org/10.1016/j.apenergy.2020.116077

[34] Sadeghnejad, M., and Shafabakhsh, G., Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures. Construction and Building Materials, 157, pp. 965-974. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.163

[35] Li, R., Xiao, F., Amirkhanian, S., You, Z., and Huang, J., Developments of nano materials and technologies on asphalt materials–A review. Construction and Building Materials, 143, pp. 633-648, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.158

[36] Miranda-Argüello, F., Loria-Salazar, L., Aguiar-Moya, J.P., and Leiva-Padilla, P., Measurement of G* in fine asphalt mixes: dynamic mechanical analyzer shear test implementation. Transportation Research Record, 2507(1), pp. 39-49, 2019. DOI: https://doi.org/10.3141/2507-05

[37] Mohammed, A.M., and Abed, A., Effect of nano-TiO2 on physical and rheological properties of asphalt cement. Open Engineering, 14(1), art. 20220520, 2024. DOI: https://doi.org/10.1515/eng-2022-0520

[38] Saleh, A.M.M., and Trad, M.A., Generation of asphalt performance grading map for Egypt based on the SUPERPAVETM program. Construction and Building Materials, 25, pp. 2248-2253, 2011. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.009

[39] Abo-Hashema, M.A., Mousa, R.M., Al-Zedjali, S.A., Al Balushi, Q.A., Metwally, M., and Al-Rashdi, M.H., Development of oman performance grade paving map for superpave asphalt mix design. In: The 19th Annual International Conference on Highway, Airports Pavement Engineering, Infrastructures & Asphalt Technology. Liverpool, United Kingdom, [online]. 2020. Available at: https://www.ljmu.ac.uk/%7E/media/files/ljmu/about-us/faculties-and-schools/asphalt-conference/papers/asphalt/asphalt/doi-10,-d-,1515ijpeat20160033.pdf?la=en

Cómo citar

IEEE

[1]
P. Cabrera, G. Botasso, y A. M. Castro-Luna, «Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI)», DYNA, vol. 92, n.º 237, pp. 80–88, may 2025.

ACM

[1]
Cabrera, P., Botasso, G. y Castro-Luna, A.M. 2025. Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA. 92, 237 (may 2025), 80–88. DOI:https://doi.org/10.15446/dyna.v92n237.119489.

ACS

(1)
Cabrera, P.; Botasso, G.; Castro-Luna, A. M. Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA 2025, 92, 80-88.

APA

Cabrera, P., Botasso, G. & Castro-Luna, A. M. (2025). Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA, 92(237), 80–88. https://doi.org/10.15446/dyna.v92n237.119489

ABNT

CABRERA, P.; BOTASSO, G.; CASTRO-LUNA, A. M. Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA, [S. l.], v. 92, n. 237, p. 80–88, 2025. DOI: 10.15446/dyna.v92n237.119489. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/119489. Acesso em: 25 dic. 2025.

Chicago

Cabrera, Pablo, Gerardo Botasso, y Ana M. Castro-Luna. 2025. «Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI)». DYNA 92 (237):80-88. https://doi.org/10.15446/dyna.v92n237.119489.

Harvard

Cabrera, P., Botasso, G. y Castro-Luna, A. M. (2025) «Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI)», DYNA, 92(237), pp. 80–88. doi: 10.15446/dyna.v92n237.119489.

MLA

Cabrera, P., G. Botasso, y A. M. Castro-Luna. «Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI)». DYNA, vol. 92, n.º 237, mayo de 2025, pp. 80-88, doi:10.15446/dyna.v92n237.119489.

Turabian

Cabrera, Pablo, Gerardo Botasso, y Ana M. Castro-Luna. «Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI)». DYNA 92, no. 237 (mayo 9, 2025): 80–88. Accedido diciembre 25, 2025. https://revistas.unal.edu.co/index.php/dyna/article/view/119489.

Vancouver

1.
Cabrera P, Botasso G, Castro-Luna AM. Contribution of an asphalt pavement modified with TiO2 to the moderation of the Urban Heat Island (UHI). DYNA [Internet]. 9 de mayo de 2025 [citado 25 de diciembre de 2025];92(237):80-8. Disponible en: https://revistas.unal.edu.co/index.php/dyna/article/view/119489

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

231

Descargas

Los datos de descargas todavía no están disponibles.