Publicado
Structural performance of composite beams using advanced modeling for nonlinear analysis
Rendimiento estructural de vigas compuestas mediante modelado avanzado para análisis no lineal
DOI:
https://doi.org/10.15446/dyna.v92n238.119561Palabras clave:
concrete, composite beam, reinforcement, crack, finite elements (en)hormigón, viga compuesta, reforzamiento, grieta, elementos finitos (es)
Descargas
A few studies used full-embedded steel sections in composite beams to reduce their cross sections. This paper presents the behavior of normal and high-strength composite beams having various heights of full-embedded steel sections. The stirrups and compression reinforcement details of the beams were the same. The finite element method was adopted in the 3D nonlinear analysis of the presented study. Full-scale composite models were investigated and tested under four-point bending. The load-deflection behavior including the elastic and post-cracking stages was monitored in this paper. Furthermore, the stress distribution of embedded steel sections, crack patterns, and modes of failure of the composite beams were investigated and studied. The results showed that the implemented analytical models were accurate, in which the error percentage was only 1.3%. The high-strength concrete composite beams showed more strength and ductile failure than those with normal strength. Also, the full-embedded steel sections have fully or partially yielded.
Algunos estudios utilizaron secciones de acero completamente embebidas en vigas compuestas para reducir sus secciones transversales. Este artículo presenta el comportamiento de vigas compuestas normales y de alta resistencia con varias alturas de secciones de acero completamente embebidas. Los detalles de los estribos y el refuerzo de compresión de las vigas fueron los mismos. El método de elementos finitos se adoptó en el análisis no lineal 3D del estudio presentado. Se investigaron y probaron modelos compuestos a escala real bajo flexión en cuatro puntos. En este artículo se monitoreó el comportamiento de carga-deflexión, incluyendo las etapas elásticas y post-fisuración. Además, se investigó y estudió la distribución de tensiones de las secciones de acero embebidas, los patrones de fisuración y los modos de fallo de las vigas compuestas. Los resultados mostraron que los modelos analíticos implementados fueron precisos, en los que el porcentaje de error fue de solo 1.3%. Las vigas compuestas de hormigón de alta resistencia mostraron mayor resistencia y fallo dúctil que aquellas con resistencia normal. Además, las secciones de acero completamente embebidas han cedido total o parcialmente.
Referencias
[1] Munoz, M.B., Study of bond behaviour between FRP reinforcement and concrete, PhD. Thesis, Departament d'Enginyeria mecànica i de la construcció industrial, Universitat de Girona, Girona, Spain, 2011.
[2] Saikali, E.R., Palermo, D., and Pantazopoulou S., Bond behaviour of steel reinforcing bars embedded in ultra-high-performance steel fiber reinforced concrete, Proceedings of CSCE Annual Conference (CSCE), 2019.
[3] Basaran, B., and Kalkan, I., Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests. Composite Structures, 242, art. 112185, 2020. DOI: https://doi.org/10.1016/j.compstruct.2020.112185.
[4] Wang, X., Liu, Y., and Xin, H., Bond strength prediction of concrete-encased steel structures using hybrid machine learning method. Structures, 32, pp. 2279-2292, 2021. DOI: https://doi.org/10.1016/j.istruc.2021.04.018.
[5] Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., Liu, Z. and Su, J., The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Construction and building materials, 282(2), art. 122706, 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122706.
[6] Niu, Y., Wei, J., and Jiao, C., Crack propagation behavior of ultra-high-performance concrete (UHPC) reinforced with hybrid steel fibers under flexural loading. Construction and Building Materials, 294(10), art. 123510, 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123510.
[7] Yan, F., and Lin, Z., Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions. Composite Structures, 161, pp. 393–406, art. 55, 2017. DOI: https://doi.org/10.1016/j.compstruct.2016.11.055.
[8] Lin, H., Zhao, Y., Feng, P., Ye, H., Ozbolt, J., Jiang, C. and Yang, J.-Q. State-of-the-art review on the bond properties of corroded reinforcing steel bar. Construction and Building Materials, 213(1), pp. 216–233, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.077.
[9] Buyukozturk, O., Nonlinear analysis of reinforced concrete structures. Computers and Structures, 7(1), pp. 149–156, 1977. DOI: https://doi.org/10.1016/0045-7949(77)90069-4.
[10] Bergan, P.G., and Holand, I., Nonlinear finite element analysis of concrete structures. Computer Methods in Applied Mechanics and Engineering, 2(17-18), pp. 443–467, 1979. DOI: https://doi.org/10.1016/0045-7825(79)90027-6.
[11] Vecchio, F.J., Nonlinear finite element analysis of reinforced concrete membranes. ACI Structural Journal, 86(1), pp. 26–35, 1989. DOI: https://doi.org/10.14359/2620.
[12] Oller, S., Oñate, E., Oliver, J., and Lubliner, J., Finite element nonlinear analysis of concrete structures using a “plastic-damage model”. Engineering Fracture Mechanics, 35(1–3), pp. 219–231, 1990. DOI: https://doi.org/10.1016/0013-7944(90)90200-Z.
[13] Damian, K., Thomas, M., Solomon, Y., Kasidit, C., and Tanarat, P., Finite element modeling of reinforced concrete structures strengthened with FRP laminates. Report for Oregon Department of Transportation, Salem, 2001.
[14] Wolanski, A.J., Flexural behavior of reinforced and prestressed concrete beams using finite element analysis, MSc. Thesis, Department of Civil and Environmental Engineering, Marquette University, Wisconsin, USA, 2004.
[15] Hoque, M., Rattanawangcharoen, N., Shah, A.H., and Desai, Y.M., 3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement. Computers and Concrete, 4(2), pp. 135-156, 2007. DOI: https://doi.org/10.12989/cac.2007.4.2.135.
[16] Saifullah, I., Nasir-uz-zaman, M., Uddin, S.M.K., Hossain, M.A., and Rashid, M.H., Experimental and analytical investigation of flexural behavior of reinforced concrete beam, International. Journal of Engineering and Technology, 11(1), pp. 188-196, [online]. 2011. Available at: https://shorturl.at/9MWyu.
[17] Gilbert, A.M., Validation of a laboratory method for accelerated fatigue testing of bridge deck panels with a rolling wheel load, MSc. Thesis, Department of Civil Engineering, Montana State University, Bozeman, USA, 2012.
[18] El-Mogy, M., El-Ragaby, A., and El-Salakawy, E., Experimental testing and finite element modeling on continuous concrete beams reinforced with fibre reinforced polymer bars and stirrups. Canadian Journal of Civil Engineering, 40(11), pp. 1091–1102, 2013. DOI: https://doi.org/10.1139/cjce-2012-0509.
[19] Peng, Q., and Liu, W., Inverse analysis of related parameters in calculation of concrete drying shrinkage based on ANSYS design optimization. Journal of materials in civil engineering, 25(6), pp. 683–692, 2013. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000635.
[20] Tsavdaridis, K.D., Mello, C.D., and Huo, B.Y., Experimental and computational study of the vertical shear behaviour of partially encased perforated steel beams. Engineering structures, 56, pp. 805–822, 2013. DOI: https://doi.org/10.1016/j.engstruct.2013.04.025.
[21] Satasivam, S., and Bai, Y., Mechanical performance of bolted modular GFRP composite sandwich structures using standard and blind bolts. Composite Structures, 117, pp. 59–70, 2014. DOI: https://doi.org/10.1016/j.compstruct.2014.06.011.
[22] Hazelwood, T., Jefferson, A.D., Lark, R.J., and Gardner, D.R., Numerical simulation of the long-term behaviour of a self-healing concrete beam vs standard reinforced concrete. Engineering Structures, 102, pp. 176–188, 2015. DOI: https://doi.org/10.1016/j.engstruct.2015.07.056.
[23] Qu, Y., Li, X., Kong, X., Zhang, W., and Wang, X., Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading. Engineering Structures, 128, pp. 96–110, 2016. DOI: https://doi.org/10.1016/j.engstruct.2016.09.032.
[24] Tong, L., Liu, B. and Zhao, X.-L. Numerical study of fatigue behaviour of steel reinforced concrete (SRC) beams. Engineering Fracture Mechanics,178, pp. 477–496, 2017. DOI: https://doi.org/10.1016/j.engfracmech.2017.02.017.
[25] Desayi, P., and Krishnan, S., Equation for the stress-strain curve of concrete. International Concrete Abstracts Portal, 61(3), pp. 345-350, 1964. DOI: https://doi.org/10.14359/7785.
[26] Gere, J.M., and Timoshenko, S.P., Mechanics of Materials. ed, Boston, MA: PWS, 1997.
[27] Thorenfeldt, E., Tomaszewicz, A., Jensen, J.J., Mechanical properties of high-strength concrete and applications in design. In Proceedings of the Symposium on Utilization of High-Strength Concrete, Stavanger, Norway, 1987
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




