Publicado
Influence of dissolved organic carbon on the limnochemical characteristics of a tropical endorheic wetland during a hydrological period: El Eneal Wetland, Colombia
Influencia del carbono orgánico disuelto en las características limnoquímicas de un humedal endorreico tropical durante un período hidrológico: Humedal El Eneal, Colombia
DOI:
https://doi.org/10.15446/dyna.v93n240.119929Palabras clave:
DOC, tropical wetland, limnochemistry, DOM, endorheic (en)DOC, humedal tropical, limnoquímica, DOM, endorreico (es)
Descargas
The progressive darkening of inland waters globally has been attributed to increasing dissolved organic carbon (DOC) concentrations, yet this phenomenon remains understudied in tropical systems. This research investigated DOC's influence on the limnochemical characteristics of a tropical endorheic wetland through two sampling campaigns during different hydrological periods. DOC was measured alongside key limnological variables, with relationships analyzed through descriptive statistics and principal component analysis. Results demonstrated significant positive correlations between DOC and electrical conductivity (r=0.78, p<0.001) and turbidity (r=0.74, p<0.001), while inverse correlations emerged with bicarbonates (r=-0.80, p<0.001), ORP (r=-0.61, p<0.001), and chlorophyll-a (r=-0.75, p<0.001). However, these associations likely reflect synchronous responses to increasing water levels rather than direct DOC effects. Our findings suggest DOC potentially regulates phytoplankton biomass and optical properties in this tropical wetland system.
El oscurecimiento progresivo de aguas continentales se ha atribuido al incremento de carbono orgánico disuelto (COD), fenómeno poco estudiado en sistemas tropicales. Esta investigación evaluó la influencia del COD en las características limnoquímicas de un humedal endorreico tropical mediante dos campañas de muestreo en diferentes periodos hidrológicos. Se midió el COD junto con parámetros limnológicos, analizando relaciones mediante estadística descriptiva y análisis de componentes principales. Los resultados mostraron correlaciones positivas significativas entre COD y conductividad eléctrica (r=0,78, p<0,001) y turbidez (r=0,74, p<0,001), y correlaciones inversas con bicarbonatos (r=-0,80, p<0,001), ORP (r=-0,61, p<0,001) y clorofila-a (r=-0,75, p<0,001). Estas asociaciones probablemente reflejan respuestas sincrónicas al aumento del nivel hídrico más que efectos directos del COD. Los hallazgos sugieren que el COD regula potencialmente la biomasa fitoplanctónica y las propiedades ópticas del sistema.
Referencias
[1] Fork, M.L., Karlsson, J., and Sponseller, R.A., Dissolved organic matter regulates nutrient limitation and growth of benthic algae in northern lakes through interacting effects on nutrient and light availability. Limnology and Oceanography Letters, 5(6), pp. 417-424, 2020. DOI: https://doi.org/10.1002/lol2.10166.
[2] Horppila, J., Keskinen, S., Nurmesniemi, M., Nurminen, L., Pippingsköld, E., Rajala, S., Sainio, K., and Estlander, S., Factors behind the threshold‐like changes in lake ecosystems along a water colour gradient: the effects of dissolved organic carbon and iron on euphotic depth, mixing depth and phytoplankton biomass. Freshwater Biology, 68(6), pp. 1031-1040, 2023. DOI: https://doi.org/10.1111/fwb.14083.
[3] Pagano, T., Bida, M., and Kenny, J., Trends in levels of allochthonous dissolved organic carbon in natural water: a review of potential mechanisms under a changing climate. Water, 6(10), pp. 2862-2897, 2014. DOI: https://doi.org/10.3390/w6102862.
[4] Stetler, J.T., Knoll, L.B., Driscoll, C.T., and Rose, K.C., Lake browning generates a spatiotemporal mismatch between dissolved organic carbon and limiting nutrients. Limnology and Oceanography Letters, 6(4), pp. 182-191, 2021. DOI: https://doi.org/10.1002/lol2.10194.
[5] Senar, O.E., Creed, I.F., and Trick, C.G., Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes. Aquatic Sciences, 83(2), art. 21, 2021. DOI: https://doi.org/10.1007/s00027-021-00780-0.
[6] Rodríguez-Cardona, B.M., Houle, D., Couture, S., Lapierre, J-F., and Del Giorgio, P.A., Long-term trends in carbon and color signal uneven browning and terrestrialization of northern lakes. Communications Earth and Environment, 4(1), art. 338, 2023. DOI: https://doi.org/10.1038/s43247-023-00999-9
[7] Meyer-Jacob, C., Michelutti, N., Paterson, A.M., Cumming, B.F., Keller, W., and Smol, J.P., The browning and re-browning of lakes: divergent lake-water organic carbon trends linked to acid deposition and climate change. Scientific Reports, 9(1), art. 16676, 2019. DOI: https://doi.org/10.1038/s41598-019-52912-0
[8] Yang, L., Zhang, S., Yin, L., and Zhang, B., Global occupation of wetland by artificial impervious surface area expansion and its impact on ecosystem service value for 2001–2018. Ecological Indicators, 142, art. 109307, 2022. DOI: https://doi.org/10.1016/j.ecolind.2022.109307
[9] Sobek, S., Tranvik, L.J., Prairie, Y.T., Kortelainen, P., and Cole, J.J., Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 52(3), pp. 1208-1219, 2007. DOI: https://doi.org/10.4319/lo.2007.52.3.1208
[10] Tadeu, C.M.O., Brandão, L.P.M., Bezerra-Neto, J.F., Pujoni, D.G.F., and Barbosa, F.A.R., Photodegradation of autochthonous and allochthonous dissolved organic matter in a natural tropical lake. Limnologica, 87, art. 125846, 2021. DOI: https://doi.org/10.1016/j.limno.2020.125846
[11] Brandão, L.P.M., Brighenti, L.S., Staehr, P.A., Asmala, E., Massicotte, P., Tonetta, D., Barbosa, F.A.R., Pujoni, D., and Bezerra-Neto, J.F., Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake. Biogeosciences, 15(9), pp. 2931-2943, 2018. DOI: https://doi.org/10.5194/bg-15-2931-2018
[12] Harvey, J.W., and McCormick, P.V., Groundwater's significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeology Journal, 17(1), pp. 185-201, 2009. DOI: https://doi.org/10.1007/s10040-008-0379-x
[13] Junk, W.J., World wetlands classification: a new hierarchic hydro-ecological approach. Wetlands Ecology and Management, 32, pp. 975-1001, 2024. DOI: https://doi.org/10.1007/s11273-024-10010-7
[14] Olson, C.R., Solomon, C.T., and Jones, S.E., Shifting limitation of primary production: experimental support for a new model in lake ecosystems. Ecology Letters, 23(12), pp. 1800-1808, 2020. DOI: https://doi.org/10.1111/ele.13606
[15] Solomon, C.T., Jones, S.E., Weidel, B.C., Buffam, I., Fork, M.L., Karlsson, J., Larsen, S., Lennon, J.T., Read, J.S., Sadro, S., and Saros, J.E., Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems, 18(3), pp. 376-389, 2015. DOI: https://doi.org/10.1007/s10021-015-9848-y
[16] Kelly, P.T., Solomon, C.T., Zwart, J.A., and Jones, S.E., A framework for understanding variation in pelagic gross primary production of lake ecosystems. Ecosystems, 21(7), pp. 1364-1376, 2018. DOI: https://doi.org/10.1007/s10021-018-0226-4
[17] Lønborg, C., Carreira, C., Jickells, T., and Álvarez-Salgado, X.A., Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Frontiers in Marine Science, 7, art. 0466, 2020. DOI: https://doi.org/10.3389/fmars.2020.00466
[18] Kutser, T., Pierson, D.C., Kallio, K.Y., Reinart, A., and Sobek, S., Mapping Lake CDOM by satellite remote sensing. Remote Sensing of Environment, 94(4), pp. 535-540, 2005. DOI: https://doi.org/10.1016/j.rse.2004.11.009
[19] Ríos, E.L., Palacio, J.A., and Aguirre, N.J., Variabilidad fisicoquímica del agua en la ciénaga El Eneal, reserva natural Sanguaré municipio de San Onofre-Sucre, Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, (46), pp. 39-45, 2008.
[20] Ríos, E.L., Palacio, J.A., and Aguirre, N.J., Primary productivity and humic substances in the swamp el eneal, San onofre Sucre-Colombia. Revista Facultad de Ingeniería Universidad de Antioquia, (47), pp. 67-72, 2009.
[21] Patiño, F., and Amaya, F., Estudio ecológico del Golfo de Morrosquillo, Universidad Nacional de Colombia, pp. 11-14, 1993.
[22] Mira, J.D., Urrego, L.E., and Monsalve, K., Determinantes naturales y antrópicos de la distribución, estructura y composición florística de los manglares de la reserva natural Sanguaré, Colombia. Revista de Biología Tropical, 67(4), pp. 810-824, 2019. DOI: http://dx.doi.org/10.15517/rbt.v67i4.30833
[23] Castaño, L., Estudio preliminar de la Ciénaga la Boquilla, Municipio de San Onofre, MSc. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, 1999.
[24] APHA., Standard methods for the examination of water and wastewater, 23rd ed., Washington D.C: American Public Health Association, 2017.
[25] Aguirre, N., Hidrobiología sanitaria. Ude@, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, 202, 2013. ISBN 978-958-8790-55-8.
[26] R., Core, Team., R., A language and environment for statistical computing. R., Foundation for statistical computing, Vienna, Austria, [online], 2018. Available at: http://www.R-project.org/.
[27] Ďuriš, V., Bartkova, R., and Tirpáková, A., Principal component analysis and factor analysis for an Atanassov IF data set. Mathematics, 9(17), Art. 2067, 2021. DOI: https://doi.org/10.3390/math9172067
[28] Wetzel, R.G., Limnology: lake and river ecosystems, 1, Academic Press, 2001.
[29] Roldán-Pérez, G., and Ramírez-Restrepo, J.J., Fundamentos de limnología neotropical, 2022.
[30] Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., Kortelainen, P.L., Kutser, T., Larsen, S., Laurion, I., Leech, D.M., McCallister, S.L., McKnight, D.M., Melack, J.M., Overholt, E., and Weyhenmeyer, G.A., Lagos y embalses como reguladores del ciclo del carbono y del clima. Limnología y Oceanografía, [online]. 54(6), pp. 2298–2314, 2009. Available at: https://www.jstor.org/stable/20622833
[31] Reithmaier, G.M.S., Cabral, A., Akhand, A., et al., Química de carbonatos y secuestro de carbono impulsada por el afloramiento de carbono inorgánico de manglares y marismas. Nat Commun, 14, art. 8196, 2023. DOI: https://doi.org/10.1038/s41467-023-44037-w
[32] Dubourg, P., North, R.L., Hunter, K., Vandergucht, D.M., Abirhire, O., Silsbe, G.M., and Hudson, J.J., Light and nutrient co-limitation of phytoplankton communities in a large reservoir: Lake Diefenbaker, Saskatchewan, Canada. Journal of Great Lakes Research, 41(2), pp. 129-143, 2015. DOI: https://doi.org/10.1016/j.jglr.2015.10.001
[33] Jackson, T.A., and Hecky, R.E., Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Canadian Journal of Fisheries and Aquatic Sciences, 37(12), pp. 2300-2317, 1980. DOI: https://doi.org/10.1139/f80-277
[34] Finstad, A.G., Helland, I.P., Ugedal, O., Hesthagen, T., and Hessen, D.O., Unimodal response of fish yield to dissolved organic carbon. Ecology Letters, 17(1), pp. 36-43, 2014. DOI: https://doi.org/10.1111/ele.12201
[35] Williamson, C., Overholt, E., Pilla, R., et al., Ecological consequences of long-term browning in lakes. Scientific Reports, 5, art. 18666, 2016. DOI: https://doi.org/10.1038/srep18666
[36] Sherbo, B.A., Tonin, J., Paterson, M.J., Hann, B.J., Kozak, J., and Higgins, S.N., The effects of terrestrial dissolved organic matter on phytoplankton biomass and productivity in boreal lakes. Freshwater Biology, 68(12), pp. 2109-2119, 2023. DOI: https://doi.org/10.1111/fwb.14178
[37] Maciás-Echeverri, L., and Aguirre, N.J., Caracterización del fitoplancton y zooplancton como bioindicadores de calidad del agua en la ciénaga del Eneal, Colombia. BSc. Thesis, Universidad de Antioquia, Medellín, 2024.
[38] Röttgers, R., Novak, M.G., and Belz, M., Measurement of light absorption by chromophoric dissolved organic matter using a type-II liquid capillary waveguide: assessment of an achievable accuracy. Applied Optics, 63, pp. 3811-3824, 2024. DOI: https://doi.org/10.1364/AO.516580
[39] Bonelli, A.G., Vantrepotte, V., Jorge, D.S.F., Demaria, J., Jamet, C., Dessailly, D., and Loisel, H., Colored dissolved organic matter absorption at global scale from ocean color radiometry observation: spatio-temporal variability and contribution to the absorption budget. Remote sensing of environment, 265, art. 112637, 2021. DOI: https://doi.org/10.1016/j.rse.2021.112637
[40] Sahay, A., Ali, S.M., Raman, M., Gupta, A., Motwani, G., Thakker, R., and Shanmugam, P., Empirically derived coloured dissolved organic matter absorption coefficient using in-situ and Sentinel 3/OLCI in coastal waters of India. International Journal of Remote Sensing, 43(4), pp. 1430-1450, 2022. DOI: https://doi.org/10.1080/01431161.2022.2040754
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2026 DYNA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
El autor o autores de un artículo aceptado para publicación en cualquiera de las revistas editadas por la facultad de Minas cederán la totalidad de los derechos patrimoniales a la Universidad Nacional de Colombia de manera gratuita, dentro de los cuáles se incluyen: el derecho a editar, publicar, reproducir y distribuir tanto en medios impresos como digitales, además de incluir en artículo en índices internacionales y/o bases de datos, de igual manera, se faculta a la editorial para utilizar las imágenes, tablas y/o cualquier material gráfico presentado en el artículo para el diseño de carátulas o posters de la misma revista.




